## Gilberto Fronza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8963236/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | MiR-146b-5p regulates IL-23 receptor complex expression in chronic lymphocytic leukemia cells. Blood<br>Advances, 2022, 6, 5593-5612.                                                                                        | 2.5 | 3         |
| 2  | Comparison of ibrutinib and idelalisib plus rituximab in realâ€life relapsed/resistant chronic<br>lymphocytic leukemia cases. European Journal of Haematology, 2021, 106, 493-499.                                           | 1.1 | 5         |
| 3  | MicroRNA-Mutant P53 Crosstalk in Chemoresistance: A Hint to Monitor Therapy Outcome. MicroRNA<br>(Shariqah, United Arab Emirates), 2021, 9, 322-335.                                                                         | 0.6 | 1         |
| 4  | Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by<br>Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay. Genes, 2021, 12,<br>277.                | 1.0 | 6         |
| 5  | Potential Role of miRNAs in the Acquisition of Chemoresistance in Neuroblastoma. Journal of<br>Personalized Medicine, 2021, 11, 107.                                                                                         | 1.1 | 7         |
| 6  | <scp><i>TP53</i></scp> disruption as a risk factor in the era of targeted therapies: A multicenter<br>retrospective study of 525 chronic lymphocytic leukemia cases. American Journal of Hematology, 2021,<br>96, E306-E310. | 2.0 | 8         |
| 7  | <i>TP53</i> Mutations with Low Variant Allele Frequency Predict Short Survival in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2021, 27, 5566-5575.                                                               | 3.2 | 23        |
| 8  | Lymphocyte Doubling Time As A Key Prognostic Factor To Predict Time To First Treatment In Early-Stage<br>Chronic Lymphocytic Leukemia. Frontiers in Oncology, 2021, 11, 684621.                                              | 1.3 | 6         |
| 9  | Antitumor Effects of PRIMA-1 and PRIMA-1Met (APR246) in Hematological Malignancies: Still a Mutant<br>P53-Dependent Affair?. Cells, 2021, 10, 98.                                                                            | 1.8 | 23        |
| 10 | SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot<br>mutations. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129440.                                     | 1.1 | 13        |
| 11 | Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter?.<br>Frontiers in Oncology, 2020, 10, 593383.                                                                                    | 1.3 | 50        |
| 12 | Time to first treatment and P53 dysfunction in chronic lymphocytic leukaemia: results of the O-CLL1 study in early stage patients. Scientific Reports, 2020, 10, 18427.                                                      | 1.6 | 13        |
| 13 | Validation of a survival-risk score (SRS) in relapsed/refractory CLL patients treated with idelalisib–rituximab. Blood Cancer Journal, 2020, 10, 92.                                                                         | 2.8 | 7         |
| 14 | TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors. Expert Opinion on Investigational Drugs, 2020, 29, 869-880.                                        | 1.9 | 10        |
| 15 | NEAT1 Long Isoform Is Highly Expressed in Chronic Lymphocytic Leukemia Irrespectively of Cytogenetic<br>Groups or Clinical Outcome. Non-coding RNA, 2020, 6, 11.                                                             | 1.3 | 11        |
| 16 | Yeast As a Chassis for Developing Functional Assays to Study Human P53. Journal of Visualized Experiments, 2019, , .                                                                                                         | 0.2 | 9         |
| 17 | Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival. Bioscience Reports, 2019, 39, .                                                                                                           | 1.1 | 37        |
| 18 | P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development. Bioscience Reports, 2019, 39, .                                                                                | 1.1 | 5         |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Scientific Reports, 2018, 8, 13762.                                                                                | 1.6 | 29        |
| 20 | Gambogic acid counteracts mutant p53 stability by inducing autophagy. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2017, 1864, 382-392.                                                                                                          | 1.9 | 24        |
| 21 | TP63 mutations are frequent in cutaneous melanoma, support UV etiology, but their role in melanomagenesis is unclear. Oncology Reports, 2017, 38, 1985-1994.                                                                                                    | 1.2 | 12        |
| 22 | Human transcription factors in yeast: the fruitful examples of P53 and NF-кB. FEMS Yeast Research, 2016, 16, fow083.                                                                                                                                            | 1.1 | 6         |
| 23 | The <i><scp>CDKN</scp>2A/p16</i> <scp><sup><i>INK</i></sup></scp> <sup><i>4a</i></sup><br>5′ <scp>UTR</scp> sequence and translational regulation: impact of novel variants predisposing to<br>melanoma. Pigment Cell and Melanoma Research, 2016, 29, 210-221. | 1.5 | 9         |
| 24 | Abstract 2883: Impact of novel CDKN2A/p16INK4a 5'UTR variants predisposing to melanoma on p16<br>translational regulation. , 2016, , .                                                                                                                          |     | 0         |
| 25 | Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules. Experimental Cell Research, 2015, 330, 164-177.                                                                                    | 1.2 | 11        |
| 26 | TP53 Mutants in the Tower of Babel of Cancer Progression. Human Mutation, 2014, 35, 689-701.                                                                                                                                                                    | 1.1 | 39        |
| 27 | Structural Studies on Mechanisms to Activate Mutant p53. Sub-Cellular Biochemistry, 2014, 85, 119-132.                                                                                                                                                          | 1.0 | 9         |
| 28 | Comparison of the biological effects of MMS and Me-lex, a minor groove methylating agent: Clarifying<br>the role of N3-methyladenine. Mutation Research - Fundamental and Molecular Mechanisms of<br>Mutagenesis, 2014, 759, 45-51.                             | 0.4 | 3         |
| 29 | ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct<br>features of DNA target sites. Oncotarget, 2014, 5, 2116-2130.                                                                                     | 0.8 | 25        |
| 30 | Abstract 3402: ΔN-p63α and TA-p63α exhibit intrinsic differences in transactivation specificities that depend<br>on distinct features of DNA target sites. , 2014, , .                                                                                          |     | 0         |
| 31 | EEC- and ADULT-Associated <i>TP63</i> Mutations Exhibit Functional Heterogeneity Toward P63<br>Responsive Sequences. Human Mutation, 2013, 34, 894-904.                                                                                                         | 1.1 | 19        |
| 32 | PRIMA-1 induces autophagy in cancer cells carrying mutant or wild type p53. Biochimica Et Biophysica<br>Acta - Molecular Cell Research, 2013, 1833, 1904-1913.                                                                                                  | 1.9 | 24        |
| 33 | Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucleic Acids Research, 2013, 41, 8637-8653.                                                                                                | 6.5 | 41        |
| 34 | The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Research, 2013, 41, D962-D969.                                                                                                          | 6.5 | 138       |
| 35 | P53 Family Members Modulate the Expression of PRODH, but Not PRODH2, via Intronic p53 Response<br>Elements. PLoS ONE, 2013, 8, e69152.                                                                                                                          | 1.1 | 29        |
| 36 | Structure of p73 DNA-binding domain tetramer modulates p73 transactivation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6066-6071.                                                                              | 3.3 | 41        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified<br>Yeast-Based Screening System. PLoS ONE, 2011, 6, e20643.                                                                                                | 1.1 | 43        |
| 38 | 3-Methyl-3-deazaadenine, a stable isostere of N3-methyl-adenine, is efficiently bypassed by replication in vivo and by transcription in vitro. DNA Repair, 2011, 10, 861-868.                                                                                | 1.3 | 7         |
| 39 | Dominant-Negative Features of Mutant <i>TP53</i> in Germline Carriers Have Limited Impact on Cancer<br>Outcomes. Molecular Cancer Research, 2011, 9, 271-279.                                                                                                | 1.5 | 66        |
| 40 | Mutagenicity of N3-methyladenine: A multi-translesion polymerase affair. Mutation Research -<br>Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 683, 50-56.                                                                                       | 0.4 | 20        |
| 41 | XRCC1 deficiency influences the cytotoxicity and the genomic instability induced by Me-lex, a specific inducer of N3-methyladenine. DNA Repair, 2010, 9, 728-736.                                                                                            | 1.3 | 1         |
| 42 | <i>MDM2</i> SNP309 genotype is associated with ferritin and LDH serum levels in children with stage<br>4 neuroblastoma. Pediatric Blood and Cancer, 2010, 55, 267-272.                                                                                       | 0.8 | 5         |
| 43 | Effect of N3-Methyladenine and an Isosteric Stable Analogue on DNA Polymerization. Journal of Nucleic Acids, 2010, 2010, 1-14.                                                                                                                               | 0.8 | 6         |
| 44 | PRIMA-1 cytotoxicity correlates with nucleolar localization and degradation of mutant p53 in breast cancer cells. Biochemical and Biophysical Research Communications, 2010, 402, 345-350.                                                                   | 1.0 | 21        |
| 45 | High frequency of genomic deletions induced by Me-lex, a sequence selective N3-adenine methylating<br>agent, at the Hprt locus in Chinese hamster ovary cells. Mutation Research - Fundamental and<br>Molecular Mechanisms of Mutagenesis, 2009, 671, 58-66. | 0.4 | 5         |
| 46 | Identification of a novel <i>TP53</i> germline mutation in a large Italian Li—Fraumeni syndrome Family.<br>Pediatric Blood and Cancer, 2009, 52, 303-304.                                                                                                    | 0.8 | 0         |
| 47 | <i>MDM2</i> SNP309 genotype influences survival of metastatic but not of localized neuroblastoma.<br>Pediatric Blood and Cancer, 2009, 53, 576-583.                                                                                                          | 0.8 | 17        |
| 48 | PRIMAâ€1 synergizes with adriamycin to induce cell death in nonâ€small cell lung cancer cells. Journal of<br>Cellular Biochemistry, 2008, 104, 2363-2373.                                                                                                    | 1.2 | 29        |
| 49 | Rev1 and Polζ influence toxicity and mutagenicity of Me-lex, a sequence selective N3-adenine methylating agent. DNA Repair, 2008, 7, 431-438.                                                                                                                | 1.3 | 14        |
| 50 | Impact of MDM2 SNP309 genotype on progression and survival of stage 4 neuroblastoma. European<br>Journal of Cancer, 2008, 44, 2634-2639.                                                                                                                     | 1.3 | 17        |
| 51 | Transcriptional properties of feline p53 and its tumour-associated mutants: a yeast-based approach.<br>Mutagenesis, 2007, 22, 417-423.                                                                                                                       | 1.0 | 4         |
| 52 | Transcriptional Functionality of Germ Line p53 Mutants Influences Cancer Phenotype. Clinical Cancer<br>Research, 2007, 13, 3789-3795.                                                                                                                        | 3.2 | 48        |
| 53 | The kinetics of p53-binding and histone acetylation at target promoters do not strictly correlate with gene expression after UV damage. Journal of Cellular Biochemistry, 2007, 100, 1276-1287.                                                              | 1.2 | 12        |
| 54 | Stable formation of mutated p53 multimers in a Chinese hamster cell line causes defective p53 nuclear localization and abrogates its residual function. Journal of Cellular Biochemistry, 2006, 98, 1689-1700.                                               | 1.2 | 4         |

| #          | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55         | Increased Risk of Colorectal Adenomas in Italian Subjects Carrying the <i>p53</i> PIN3 A2-Pro72<br>Haplotype. Digestion, 2006, 74, 228-235.                                                                                   | 1.2 | 19        |
| 56         | Involvement of human p53 in induced intrachromosomal recombination in Saccharomyces cerevisiae.<br>Mutagenesis, 2004, 19, 333-339.                                                                                            | 1.0 | 7         |
| 5 <b>7</b> | The biological effects of N3-methyladenine. Journal of Cellular Biochemistry, 2004, 91, 250-257.                                                                                                                              | 1.2 | 49        |
| 58         | Nucleotide Excision Repair Defect Influences Lethality and Mutagenicity Induced by Me-lex, a<br>Sequence-Selective N3-Adenine Methylating Agent in the Absence of Base Excision Repair. Biochemistry,<br>2004, 43, 5592-5599. | 1.2 | 18        |
| 59         | Characterization of the p53 mutants ability to inhibit p73β transactivation using a yeast-based functional assay. Oncogene, 2003, 22, 5252-5260.                                                                              | 2.6 | 43        |
| 60         | DNA Damage and Cytotoxicity Induced by Minor Groove Binding Methyl Sulfonate Estersâ€.<br>Biochemistry, 2003, 42, 14318-14327.                                                                                                | 1.2 | 23        |
| 61         | Influences of Base Excision Repair Defects on the Lethality and Mutagenicity Induced by Me-lex, a<br>Sequence-selective N3-Adenine Methylating Agent. Journal of Biological Chemistry, 2002, 277,<br>28663-28668.             | 1.6 | 18        |
| 62         | Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene, 2002, 21, 1641-1648.                                                                                                                  | 2.6 | 61        |
| 63         | Evidence inEscherichia colithat N3-Methyladenine Lesions Induced by a Minor Groove Binding Methyl<br>Sulfonate Ester Can Be Processed by both Base and Nucleotide Excision Repairâ€. Biochemistry, 2001, 40,<br>1796-1803.    | 1.2 | 25        |
| 64         | Partial characterization ofSUVi, a new mammalian gene induced by UV-c and expressed during the S phase of the cell cycle. Environmental and Molecular Mutagenesis, 2001, 37, 76-84.                                           | 0.9 | 3         |
| 65         | p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene, 2001, 20, 501-513.                                        | 2.6 | 55        |
| 66         | Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay. Oncogene, 2001, 20, 3533-3540.                                                                             | 2.6 | 57        |
| 67         | p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene, 2001, 20, 3573-3579.                                                                                        | 2.6 | 125       |
| 68         | Analysis of stepwise genetic changes in an AIDS-related Burkitt's lymphoma. International Journal of<br>Cancer, 2000, 88, 744-750.                                                                                            | 2.3 | 7         |
| 69         | Defective nuclear localization of p53 protein in a Chinese hamster cell line is associated with the formation of stable cytoplasmic protein multimers in cells with gene amplification. Carcinogenesis, 2000, 21, 1631-1638.  | 1.3 | 8         |
| 70         | p53 mutations experimentally induced by 8-methoxypsoralen plus UVA (PUVA) differ from those found<br>in human skin cancers in PUVA-treated patients. Mutagenesis, 2000, 15, 127-132.                                          | 1.0 | 13        |
| 71         | Multiple mutations and frameshifts are the hallmark of defective hPMS2 in pZ189-transfected human tumor cells. Nucleic Acids Research, 2000, 28, 2577-2584.                                                                   | 6.5 | 9         |
| 72         | The yeast p53 functional assay: a new tool for molecular epidemiology. Hopes and facts. Mutation<br>Research - Reviews in Mutation Research, 2000, 462, 293-301.                                                              | 2.4 | 29        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Relationship between DNA Methylation and Mutational Patterns Induced by a Sequence Selective<br>Minor Groove Methylating Agent. Journal of Biological Chemistry, 1999, 274, 18327-18334.                                                | 1.6 | 39        |
| 74 | Derivative Chromosome 17 in a Case of Burkitt Lymphoma with 8;14 Translocation. Cancer Genetics and Cytogenetics, 1999, 110, 1-6.                                                                                                       | 1.0 | 0         |
| 75 | 5-Methylcytosine at Hpall sites in p53 is not hypermutable after UVC irradiation. Mutation Research -<br>Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 431, 93-103.                                                        | 0.4 | 9         |
| 76 | Ultraviolet-light induced p53 mutational spectrum in yeast is indistinguishable from p53 mutations in human skin cancer. Carcinogenesis, 1998, 19, 741-746.                                                                             | 1.3 | 31        |
| 77 | p53 Mutations and DNA Ploidy in Colorectal Adenocarcinomas. Analytical Cellular Pathology, 1998, 17,<br>1-12.                                                                                                                           | 2.1 | 14        |
| 78 | Simple identification of dominant p53 mutants by a yeast functional assay. Carcinogenesis, 1997, 18, 2019-2021.                                                                                                                         | 1.3 | 41        |
| 79 | Determining mutational fingerprints at the human p53 locus with a yeast functional assay: a new tool for molecular epidemiology. Oncogene, 1997, 14, 1307-1313.                                                                         | 2.6 | 39        |
| 80 | Mutational specificity of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea inEscherichia coli: Comparison of in vivo with in vitro exposure of thesupF gene. , 1997, 30, 65-71.                                                             |     | 2         |
| 81 | Mutation spectra analysis suggests that N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosourea-induced lesions are subject to transcription-coupled repair in Escherichia coli. , 1997, 19, 39-45.                                               |     | 3         |
| 82 | Heterogeneousp53 mutations in a Burkitt lymphoma from an AIDS patient with monoclonalc-myc andVDJ rearrangements. , 1997, 73, 816-821.                                                                                                  |     | 6         |
| 83 | Study on aneuploidy and p53 mutations in astrocytonias. Cancer Genetics and Cytogenetics, 1996, 88, 95-102.                                                                                                                             | 1.0 | 19        |
| 84 | Concentration-dependent mutational hotspots induced by the antineoplastic drug<br>chloroethyl-cyclohexyl-nitroso-urea in mammalian cells. Mutation Research - Fundamental and<br>Molecular Mechanisms of Mutagenesis, 1996, 352, 47-49. | 0.4 | 0         |
| 85 | Lack of mutations in K-ras codons 12 and 13 in human atherosclerotic lesions. Chemico-Biological<br>Interactions, 1996, 102, 55-62.                                                                                                     | 1.7 | 5         |
| 86 | DNA adducts and chronic degenerative diseases. Pathogenetic relevance and implications in preventive medicine. Mutation Research - Reviews in Genetic Toxicology, 1996, 366, 197-238.                                                   | 3.0 | 124       |
| 87 | The ultimate carcinogen of 4-nitroquinoline 1-oxide does not react with Z-DNA and hyperreacts with<br>B-Z junctions. Nucleic Acids Research, 1994, 22, 314-320.                                                                         | 6.5 | 20        |
| 88 | Mutation spectrum of 4-nitroquinoline 1-oxide-damaged single-stranded shuttle vector DNA<br>transfected into monkey cells. Mutation Research - Fundamental and Molecular Mechanisms of<br>Mutagenesis, 1994, 308, 117-125.              | 0.4 | 8         |
| 89 | Defective splicing induced by 4NQO in the hamster hprt gene. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 323, 159-165.                                                                                 | 1.2 | 11        |
| 90 | Analysis of 4-nitroquinoline-1-oxide induced mutations at the hprt locus in mammalian cells: possible involvement of preferential DNA repair. Mutagenesis, 1994, 9, 67-72.                                                              | 1.0 | 21        |

Gilberto Fronza

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | The 4-nitroquinoline 1-oxide mutational spectrum in single stranded DNA is characterized by guanine to pyrimidine transversions. Nucleic Acids Research, 1992, 20, 1283-1287.                                                      | 6.5 | 40        |
| 92 | 4-NQO mutational spectrum in ssDNA reveals a correlation between the C8 guanine adduct and G to<br>Pyr transversions. Mutation Research - Environmental Mutagenesis and Related Subjects Including<br>Methodology, 1992, 271, 151. | 0.4 | 0         |
| 93 | 4-Acetoxyaminoquinoline-1-oxide-induced mutations in the ssM13lacZ' phage DNA. Mutation Research -<br>Environmental Mutagenesis and Related Subjects Including Methodology, 1991, 252, 203-204.                                    | 0.4 | 0         |
| 94 | Extent of helix perturbation associated with DNA modification by the o-acetyl derivative of the<br>carcinogen 4-hydroxyaminoquinoline-1-oxide. Biochimica Et Biophysica Acta Gene Regulatory<br>Mechanisms, 1990, 1087, 330-335.   | 2.4 | 3         |
| 95 | In vitro DNA modification by the ultimate carcinogen of 4-nitroquinoline-1-oxide: influence of superhelicity. Carcinogenesis, 1989, 10, 1589-1593.                                                                                 | 1.3 | 31        |
| 96 | Interaction between supercoiled DNA and the o-acetyl derivative of the carcinogen 4-nitroquinoline<br>1-oxide. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1987, 181, 337.                            | 0.4 | 0         |