Gilberto Fronza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8963236/publications.pdf

Version: 2024-02-01

96 papers

2,050 citations

236925 25 h-index 289244 40 g-index

97 all docs

97
docs citations

97 times ranked 2555 citing authors

#	Article	IF	CITATIONS
1	The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Research, 2013, 41, D962-D969.	14.5	138
2	p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene, 2001, 20, 3573-3579.	5.9	125
3	DNA adducts and chronic degenerative diseases. Pathogenetic relevance and implications in preventive medicine. Mutation Research - Reviews in Genetic Toxicology, 1996, 366, 197-238.	2.9	124
4	Dominant-Negative Features of Mutant <i>TP53</i> in Germline Carriers Have Limited Impact on Cancer Outcomes. Molecular Cancer Research, 2011, 9, 271-279.	3.4	66
5	Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene, 2002, 21, 1641-1648.	5.9	61
6	Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay. Oncogene, 2001, 20, 3533-3540.	5.9	57
7	p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene, 2001, 20, 501-513.	5.9	55
8	Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter?. Frontiers in Oncology, 2020, 10, 593383.	2.8	50
9	The biological effects of N3-methyladenine. Journal of Cellular Biochemistry, 2004, 91, 250-257.	2.6	49
10	Transcriptional Functionality of Germ Line p53 Mutants Influences Cancer Phenotype. Clinical Cancer Research, 2007, 13, 3789-3795.	7.0	48
11	Characterization of the p53 mutants ability to inhibit p73 \hat{l}^2 transactivation using a yeast-based functional assay. Oncogene, 2003, 22, 5252-5260.	5.9	43
12	p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System. PLoS ONE, 2011, 6, e20643.	2.5	43
13	Simple identification of dominant p53 mutants by a yeast functional assay. Carcinogenesis, 1997, 18, 2019-2021.	2.8	41
14	Structure of p73 DNA-binding domain tetramer modulates p73 transactivation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6066-6071.	7.1	41
15	Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucleic Acids Research, 2013, 41, 8637-8653.	14.5	41
16	The 4-nitroquinoline 1-oxide mutational spectrum in single stranded DNA is characterized by guanine to pyrimidine transversions. Nucleic Acids Research, 1992, 20, 1283-1287.	14.5	40
17	Determining mutational fingerprints at the human p53 locus with a yeast functional assay: a new tool for molecular epidemiology. Oncogene, 1997, 14, 1307-1313.	5.9	39
18	Relationship between DNA Methylation and Mutational Patterns Induced by a Sequence Selective Minor Groove Methylating Agent. Journal of Biological Chemistry, 1999, 274, 18327-18334.	3.4	39

#	Article	IF	Citations
19	TP53 Mutants in the Tower of Babel of Cancer Progression. Human Mutation, 2014, 35, 689-701.	2.5	39
20	Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival. Bioscience Reports, 2019, 39, .	2.4	37
21	In vitro DNA modification by the ultimate carcinogen of 4-nitroquinoline-1-oxide: influence of superhelicity. Carcinogenesis, 1989, 10, 1589-1593.	2.8	31
22	Ultraviolet-light induced p53 mutational spectrum in yeast is indistinguishable from p53 mutations in human skin cancer. Carcinogenesis, 1998, 19, 741-746.	2.8	31
23	The yeast p53 functional assay: a new tool for molecular epidemiology. Hopes and facts. Mutation Research - Reviews in Mutation Research, 2000, 462, 293-301.	5.5	29
24	PRIMAâ€1 synergizes with adriamycin to induce cell death in nonâ€small cell lung cancer cells. Journal of Cellular Biochemistry, 2008, 104, 2363-2373.	2.6	29
25	P53 Family Members Modulate the Expression of PRODH, but Not PRODH2, via Intronic p53 Response Elements. PLoS ONE, 2013, 8, e69152.	2.5	29
26	Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Scientific Reports, 2018, 8, 13762.	3.3	29
27	Evidence inEscherichia colithat N3-Methyladenine Lesions Induced by a Minor Groove Binding Methyl Sulfonate Ester Can Be Processed by both Base and Nucleotide Excision Repairâ€. Biochemistry, 2001, 40, 1796-1803.	2.5	25
28	\hat{l} "N-P63 \hat{l} ± and TA-P63 \hat{l} ± exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget, 2014, 5, 2116-2130.	1.8	25
29	PRIMA-1 induces autophagy in cancer cells carrying mutant or wild type p53. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1904-1913.	4.1	24
30	Gambogic acid counteracts mutant p53 stability by inducing autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 382-392.	4.1	24
31	DNA Damage and Cytotoxicity Induced by Minor Groove Binding Methyl Sulfonate Estersâ€. Biochemistry, 2003, 42, 14318-14327.	2.5	23
32	<i>TP53</i> Mutations with Low Variant Allele Frequency Predict Short Survival in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2021, 27, 5566-5575.	7.0	23
33	Antitumor Effects of PRIMA-1 and PRIMA-1Met (APR246) in Hematological Malignancies: Still a Mutant P53-Dependent Affair?. Cells, 2021, 10, 98.	4.1	23
34	Analysis of 4-nitroquinoline-1-oxide induced mutations at the hprt locus in mammalian cells: possible involvement of preferential DNA repair. Mutagenesis, 1994, 9, 67-72.	2.6	21
35	PRIMA-1 cytotoxicity correlates with nucleolar localization and degradation of mutant p53 in breast cancer cells. Biochemical and Biophysical Research Communications, 2010, 402, 345-350.	2.1	21
36	The ultimate carcinogen of 4-nitroquinoline 1-oxide does not react with Z-DNA and hyperreacts with B-Z junctions. Nucleic Acids Research, 1994, 22, 314-320.	14.5	20

#	Article	IF	CITATIONS
37	Mutagenicity of N3-methyladenine: A multi-translesion polymerase affair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 683, 50-56.	1.0	20
38	Study on aneuploidy and p53 mutations in astrocytonias. Cancer Genetics and Cytogenetics, 1996, 88, 95-102.	1.0	19
39	Increased Risk of Colorectal Adenomas in Italian Subjects Carrying the <i>p53</i> PIN3 A2-Pro72 Haplotype. Digestion, 2006, 74, 228-235.	2.3	19
40	EEC- and ADULT-Associated <i>TP63 </i> Mutations Exhibit Functional Heterogeneity Toward P63 Responsive Sequences. Human Mutation, 2013, 34, 894-904.	2.5	19
41	Influences of Base Excision Repair Defects on the Lethality and Mutagenicity Induced by Me-lex, a Sequence-selective N3-Adenine Methylating Agent. Journal of Biological Chemistry, 2002, 277, 28663-28668.	3.4	18
42	Nucleotide Excision Repair Defect Influences Lethality and Mutagenicity Induced by Me-lex, a Sequence-Selective N3-Adenine Methylating Agent in the Absence of Base Excision Repair. Biochemistry, 2004, 43, 5592-5599.	2.5	18
43	Impact of MDM2 SNP309 genotype on progression and survival of stage 4 neuroblastoma. European Journal of Cancer, 2008, 44, 2634-2639.	2.8	17
44	<i>MDM2</i> SNP309 genotype influences survival of metastatic but not of localized neuroblastoma. Pediatric Blood and Cancer, 2009, 53, 576-583.	1.5	17
45	p53 Mutations and DNA Ploidy in Colorectal Adenocarcinomas. Analytical Cellular Pathology, 1998, 17, 1-12.	2.1	14
46	Rev1 and Polî¶ influence toxicity and mutagenicity of Me-lex, a sequence selective N3-adenine methylating agent. DNA Repair, 2008, 7, 431-438.	2.8	14
47	p53 mutations experimentally induced by 8-methoxypsoralen plus UVA (PUVA) differ from those found in human skin cancers in PUVA-treated patients. Mutagenesis, 2000, 15, 127-132.	2.6	13
48	SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129440.	2.4	13
49	Time to first treatment and P53 dysfunction in chronic lymphocytic leukaemia: results of the O-CLL1 study in early stage patients. Scientific Reports, 2020, 10, 18427.	3.3	13
50	The kinetics of p53-binding and histone acetylation at target promoters do not strictly correlate with gene expression after UV damage. Journal of Cellular Biochemistry, 2007, 100, 1276-1287.	2.6	12
51	TP63 mutations are frequent in cutaneous melanoma, support UV etiology, but their role in melanomagenesis is unclear. Oncology Reports, 2017, 38, 1985-1994.	2.6	12
52	Defective splicing induced by 4NQO in the hamster hprt gene. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 323, 159-165.	1.1	11
53	Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules. Experimental Cell Research, 2015, 330, 164-177.	2.6	11
54	NEAT1 Long Isoform Is Highly Expressed in Chronic Lymphocytic Leukemia Irrespectively of Cytogenetic Groups or Clinical Outcome. Non-coding RNA, 2020, 6, 11.	2.6	11

#	Article	IF	CITATIONS
55	TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors. Expert Opinion on Investigational Drugs, 2020, 29, 869-880.	4.1	10
56	5-Methylcytosine at Hpall sites in p53 is not hypermutable after UVC irradiation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 431, 93-103.	1.0	9
57	Multiple mutations and frameshifts are the hallmark of defective hPMS2 in pZ189-transfected human tumor cells. Nucleic Acids Research, 2000, 28, 2577-2584.	14.5	9
58	Structural Studies on Mechanisms to Activate Mutant p53. Sub-Cellular Biochemistry, 2014, 85, 119-132.	2.4	9
59	The <i><scp>CDKN</scp>2A/p16</i> <scp>^{<i>INK</i>}</scp> ^{<i>4a</i>} 5′ <scp>UTR</scp> sequence and translational regulation: impact of novel variants predisposing to melanoma. Pigment Cell and Melanoma Research, 2016, 29, 210-221.	3.3	9
60	Yeast As a Chassis for Developing Functional Assays to Study Human P53. Journal of Visualized Experiments, 2019, , .	0.3	9
61	Mutation spectrum of 4-nitroquinoline 1-oxide-damaged single-stranded shuttle vector DNA transfected into monkey cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 308, 117-125.	1.0	8
62	Defective nuclear localization of p53 protein in a Chinese hamster cell line is associated with the formation of stable cytoplasmic protein multimers in cells with gene amplification. Carcinogenesis, 2000, 21, 1631-1638.	2.8	8
63	<scp><i>TP53</i></scp> disruption as a risk factor in the era of targeted therapies: A multicenter retrospective study of 525 chronic lymphocytic leukemia cases. American Journal of Hematology, 2021, 96, E306-E310.	4.1	8
64	Analysis of stepwise genetic changes in an AIDS-related Burkitt's lymphoma. International Journal of Cancer, 2000, 88, 744-750.	5.1	7
65	Involvement of human p53 in induced intrachromosomal recombination in Saccharomyces cerevisiae. Mutagenesis, 2004, 19, 333-339.	2.6	7
66	3-Methyl-3-deazaadenine, a stable isostere of N3-methyl-adenine, is efficiently bypassed by replication in vivo and by transcription in vitro. DNA Repair, 2011, 10, 861-868.	2.8	7
67	Validation of a survival-risk score (SRS) in relapsed/refractory CLL patients treated with idelalisib–rituximab. Blood Cancer Journal, 2020, 10, 92.	6.2	7
68	Potential Role of miRNAs in the Acquisition of Chemoresistance in Neuroblastoma. Journal of Personalized Medicine, 2021, 11, 107.	2.5	7
69	Heterogeneousp53 mutations in a Burkitt lymphoma from an AIDS patient with monoclonalc-myc andVDJ rearrangements., 1997, 73, 816-821.		6
70	Effect of N3-Methyladenine and an Isosteric Stable Analogue on DNA Polymerization. Journal of Nucleic Acids, 2010, 2010, 1-14.	1.2	6
71	Human transcription factors in yeast: the fruitful examples of P53 and NF-D°B. FEMS Yeast Research, 2016, 16, fow083.	2.3	6
72	Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay. Genes, 2021, 12, 277.	2.4	6

#	Article	IF	CITATIONS
73	Lymphocyte Doubling Time As A Key Prognostic Factor To Predict Time To First Treatment In Early-Stage Chronic Lymphocytic Leukemia. Frontiers in Oncology, 2021, 11, 684621.	2.8	6
74	Lack of mutations in K-ras codons 12 and 13 in human atherosclerotic lesions. Chemico-Biological Interactions, 1996, 102, 55-62.	4.0	5
75	High frequency of genomic deletions induced by Me-lex, a sequence selective N3-adenine methylating agent, at the Hprt locus in Chinese hamster ovary cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 671, 58-66.	1.0	5
76	<i>MDM2</i> SNP309 genotype is associated with ferritin and LDH serum levels in children with stage 4 neuroblastoma. Pediatric Blood and Cancer, 2010, 55, 267-272.	1.5	5
77	Comparison of ibrutinib and idelalisib plus rituximab in realâ€life relapsed/resistant chronic lymphocytic leukemia cases. European Journal of Haematology, 2021, 106, 493-499.	2.2	5
78	P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development. Bioscience Reports, 2019, 39, .	2.4	5
79	Stable formation of mutated p53 multimers in a Chinese hamster cell line causes defective p53 nuclear localization and abrogates its residual function. Journal of Cellular Biochemistry, 2006, 98, 1689-1700.	2.6	4
80	Transcriptional properties of feline p53 and its tumour-associated mutants: a yeast-based approach. Mutagenesis, 2007, 22, 417-423.	2.6	4
81	Extent of helix perturbation associated with DNA modification by the o-acetyl derivative of the carcinogen 4-hydroxyaminoquinoline-1-oxide. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1087, 330-335.	2.4	3
82	Mutation spectra analysis suggests that N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosourea-induced lesions are subject to transcription-coupled repair in Escherichia coli. , 1997, 19, 39-45.		3
83	Partial characterization of SUVi, a new mammalian gene induced by UV-c and expressed during the S phase of the cell cycle. Environmental and Molecular Mutagenesis, 2001, 37, 76-84.	2.2	3
84	Comparison of the biological effects of MMS and Me-lex, a minor groove methylating agent: Clarifying the role of N3-methyladenine. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 759, 45-51.	1.0	3
85	MiR-146b-5p regulates IL-23 receptor complex expression in chronic lymphocytic leukemia cells. Blood Advances, 2022, 6, 5593-5612.	5.2	3
86	Mutational specificity of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea in Escherichia coli: Comparison of in vivo with in vitro exposure of the sup F gene., $1997, 30, 65-71$.		2
87	XRCC1 deficiency influences the cytotoxicity and the genomic instability induced by Me-lex, a specific inducer of N3-methyladenine. DNA Repair, 2010, 9, 728-736.	2.8	1
88	MicroRNA-Mutant P53 Crosstalk in Chemoresistance: A Hint to Monitor Therapy Outcome. MicroRNA (Shariqah, United Arab Emirates), 2021, 9, 322-335.	1.2	1
89	Interaction between supercoiled DNA and the o-acetyl derivative of the carcinogen 4-nitroquinoline 1-oxide. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1987, 181, 337.	1.0	0
90	4-Acetoxyaminoquinoline-1-oxide-induced mutations in the ssM13lacZ' phage DNA. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1991, 252, 203-204.	0.4	0

#	Article	IF	CITATIONS
91	4-NQO mutational spectrum in ssDNA reveals a correlation between the C8 guanine adduct and G to Pyr transversions. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1992, 271, 151.	0.4	0
92	Concentration-dependent mutational hotspots induced by the antineoplastic drug chloroethyl-cyclohexyl-nitroso-urea in mammalian cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 352, 47-49.	1.0	0
93	Derivative Chromosome 17 in a Case of Burkitt Lymphoma with 8;14 Translocation. Cancer Genetics and Cytogenetics, 1999, 110, 1-6.	1.0	O
94	Identification of a novel <i>TP53</i> germline mutation in a large Italian Liâ€"Fraumeni syndrome Family. Pediatric Blood and Cancer, 2009, 52, 303-304.	1.5	0
95	Abstract 3402: \hat{l} N-p63 \hat{l} + and TA-p63 \hat{l} + exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites., 2014,,.		O
96	Abstract 2883: Impact of novel CDKN2A/p16INK4a 5'UTR variants predisposing to melanoma on p16 translational regulation. , 2016, , .		0