Caixia Kan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8963159/publications.pdf Version: 2024-02-01

<u> CAIVIA KAN</u>

#	Article	IF	CITATIONS
1	Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale, 2020, 12, 14589-14597.	2.8	78
2	Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector. ACS Applied Materials & Interfaces, 2020, 12, 16462-16468.	4.0	52
3	PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility. Nanoscale, 2021, 13, 8067-8076.	2.8	40
4	Wavelength-Tunable Waveguide Emissions from Electrically Driven Single ZnO/ZnO:Ga Superlattice Microwires. ACS Applied Materials & Interfaces, 2019, 11, 11800-11811.	4.0	37
5	Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments. Photonics Research, 2019, 7, 558.	3.4	37
6	Gold nanobipyramid-embedded ultrathin metal nanoframes for <i>in situ</i> monitoring catalytic reactions. Chemical Science, 2020, 11, 3198-3207.	3.7	35
7	Doping Concentration Influenced Pyroâ€Phototronic Effect in Selfâ€Powered Photodetector Based on Gaâ€Incorporated ZnO Microwire/p ⁺ â€GaN Heterojunction. Advanced Optical Materials, 2022, 10, 2101851.	3.6	29
8	Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior. Photonics Research, 2017, 5, 27.	3.4	27
9	Hybrid quadrupole plasmon induced spectrally pure ultraviolet emission from a single AgNPs@ZnO:Ga microwire based heterojunction diode. Nanoscale Advances, 2020, 2, 1340-1351.	2.2	27
10	Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources. Photonics Research, 2020, 8, 91.	3.4	27
11	Fabrication of Stable and Flexible Nanocomposite Membranes Comprised of Cellulose Nanofibers and Graphene Oxide for Nanofluidic Ion Transport. ACS Applied Nano Materials, 2019, 2, 4193-4202.	2.4	25
12	Au tailored on g-C3N4/TiO2 heterostructure for enhanced photocatalytic performance. Journal of Alloys and Compounds, 2022, 894, 162338.	2.8	23
13	Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire. Photonics Research, 2020, 8, 175.	3.4	22
14	Construction of silica-encapsulated gold-silver core-shell nanorod: Atomic facets enrichment and plasmon enhanced catalytic activity with high stability and reusability. Materials and Design, 2019, 177, 107837.	3.3	21
15	Enhanced luminescence/photodetecting bifunctional devices based on ZnO:Ga microwire/p-Si heterojunction by incorporating Ag nanowires. Nanoscale Advances, 2021, 3, 5605-5617.	2.2	20
16	Self-powered ultraviolet photodetector based on an n-ZnO:Ga microwire/p-Si heterojunction with the performance enhanced by a pyro-phototronic effect. Optics Express, 2021, 29, 30244.	1.7	20
17	Electrically driven single microwire-based single-mode microlaser. Light: Science and Applications, 2022, 11, .	7.7	20
18	Fluorescent incandescent light sources from individual quadrilateral ZnO microwire via Ga-incorporation. Optics Express, 2019, 27, 33298.	1.7	16

CAIXIA KAN

#	Article	IF	CITATIONS
19	Tailoring the electroluminescence of a single microwire based heterojunction diode using Ag nanowires deposition. CrystEngComm, 2020, 22, 2227-2237.	1.3	15
20	Heat generation and stability of a plasmonic nanogold system. Journal Physics D: Applied Physics, 2016, 49, 055302.	1.3	14
21	Silver Nanowires Deposited on Cellulose Nanofibers/Graphene Oxide Hybrid Membranes as Sandwich-Structured Films for Optoelectronic and SERS Applications. ACS Applied Nano Materials, 2020, 3, 10844-10854.	2.4	14
22	An electrically driven whispering gallery polariton microlaser. Nanoscale, 2021, 13, 5448-5459.	2.8	14
23	Gold nanobipyramid-embedded silver–platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions. Nanoscale, 2020, 12, 23663-23672.	2.8	13
24	A single microwire near-infrared exciton–polariton light-emitting diode. Nanoscale, 2021, 13, 1663-1672.	2.8	13
25	Bifunctional ultraviolet light-emitting/detecting device based on a SnO ₂ microwire/p-GaN heterojunction. Photonics Research, 2021, 9, 2475.	3.4	13
26	A novel deposition mechanism of Au on Ag nanostructures involving galvanic replacement and reduction reactions. Chemical Communications, 2021, 57, 8332-8335.	2.2	12
27	Employing rhodium tripod stars for ultraviolet plasmon enhanced Fabry–Perot mode lasing. CrystEngComm, 2020, 22, 5578-5586.	1.3	11
28	High performance lasing in a single ZnO microwire using Rh nanocubes. Optics Express, 2020, 28, 20920.	1.7	11
29	The synthesis of silver nanowires with tunable diameters using halide ions for flexible transparent conductive films. CrystEngComm, 2020, 22, 8421-8429.	1.3	10
30	Plasmon-enhanced strong exciton–polariton coupling in single microwire-based heterojunction light-emitting diodes. Optics Express, 2021, 29, 1023.	1.7	10
31	Wavelength-Tunable Green Light Sources Based on ZnO:Ga Nanowire/p-InGaN Heterojunctions. ACS Applied Nano Materials, 2021, 4, 11168-11179.	2.4	9
32	Pt nanoparticles utilized as efficient ultraviolet plasmons for enhancing whispering gallery mode lasing of a ZnO microwire <i>via</i> Ga-incorporation. Physical Chemistry Chemical Physics, 2021, 23, 6438-6447.	1.3	9
33	Plasmon-enhanced high-performance Si-based light sources by incorporating alloyed Au and Ag nanorods. CrystEngComm, 2020, 22, 6106-6115.	1.3	8
34	Dielectric function modelling and sensitivity forecast for Au–Ag alloy nanostructures. Physical Chemistry Chemical Physics, 2020, 22, 14932-14940.	1.3	8
35	Plasmon-enabled spectrally narrow ultraviolet luminescence device using Pt nanoparticles covered one microwire-based heterojunction. Optics Express, 2021, 29, 21783.	1.7	8
36	Realization of red plasmon shifts by the selective etching of Ag nanorods. CrystEngComm, 2020, 22, 7870-7876.	1.3	8

CAIXIA KAN

#	Article	IF	CITATIONS
37	Continuous-wave operation of electrically driven single mode microlaser. Applied Physics Letters, 2022, 120, .	1.5	8
38	Optical and electrical properties of (111)-oriented epitaxial SrVO3 thin films. Ceramics International, 2019, 45, 11304-11308.	2.3	7
39	Hot electron injection induced electron–hole plasma lasing in a single microwire covered by large size Ag nanoparticles. CrystEngComm, 2020, 22, 4393-4403.	1.3	7
40	Au nanobipyramids with Pt decoration enveloped in TiO ₂ nanoboxes for photocatalytic reactions. Nanoscale Advances, 2021, 3, 4226-4234.	2.2	7
41	Plasmonic enhancement of current-driven whispering gallery polariton device of single microwire based heterojunction via Rh nanocubes deposition. Journal of Luminescence, 2021, 235, 118016.	1.5	7
42	Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. Nanoscale, 2022, 14, 736-743.	2.8	7
43	Facile synthesized ZnO microcrystals for random microlasers and incandescent-type light sources. CrystEngComm, 2019, 21, 6772-6783.	1.3	6
44	Synthesis of porous Au–Ag alloy nanorods with tunable plasmonic properties and intrinsic hotspots for surface-enhanced Raman scattering. CrystEngComm, 2021, 23, 3467-3476.	1.3	6
45	Performance-enhanced single-mode microlasers in an individual microwire covered by Ag nanowires. Optics and Laser Technology, 2022, 155, 108391.	2.2	6
46	Gold nanobipyramid enveloped in alloyed nanoshell for stable plasmonic sensors. Journal Physics D: Applied Physics, 2020, 53, 295303.	1.3	4
47	Single microwire based smart color-switchable light-emitting diode. Optics and Lasers in Engineering, 2021, 138, 106433.	2.0	4
48	Dynamic regulating of lasing mode in a whispering-gallery microresonator by thermo-optic effect. Applied Physics Letters, 2021, 119, .	1.5	4
49	Continuous-wave operation of an electrically pumped single microribbon based Fabry-Perot microlaser. Optics Express, 2021, 29, 983.	1.7	4
50	Higher-performance Fabry-Perot microlaser enabled by a quadrilateral microwire via Ag nanowires decoration. Optical Materials, 2021, 120, 111419.	1.7	3
51	Gold nanobipyramids doped with Au/Pd alloyed nanoclusters for high efficiency ethanol electrooxidation. Nanoscale Advances, 2022, 4, 1827-1834.	2.2	3
52	Split resonance modes of a AuBRC plasmonic nanosystem caused by the coupling effect. Journal Physics D: Applied Physics, 2016, 49, 505103.	1.3	2
53	Vertically-aligned ZnO microrod for high-brightness light source. CrystEngComm, 2020, 22, 6453-6464.	1.3	1
54	An electrically driven single microribbon based near-infrared exciton–polariton light-emitting diode. CrystEngComm, 2021, 23, 4336-4343.	1.3	1

#	Article	IF	CITATIONS
55	Photocurrent enhancement of Al _x Ga _{1â^'x} N nanowire arrays photodetector based on coupling effects of pn junction and gradient component. Nanotechnology, 2021, 32, 385708.	1.3	1
56	Doping Concentration Influenced Pyroâ€Phototronic Effect in Selfâ€Powered Photodetector Based on Gaâ€Incorporated ZnO Microwire/p ⁺ â€GaN Heterojunction (Advanced Optical Materials) Tj ETQe	q0 0 ଓ. ୲જુBT	/Overlock 10 1

CAIXIA KAN

57 10.1063/5.0062761.1., 2021, , .