Katerina Szokolova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8962945/publications.pdf

Version: 2024-02-01

43 papers

1,438 citations

331538 21 h-index 315616 38 g-index

43 all docs 43 docs citations

43 times ranked

2477 citing authors

#	Article	IF	CITATIONS
1	Modification of structure and surface morphology in various ZnO facets via low fluence gold swift heavy ion irradiation. Surface and Interface Analysis, 2021, 53, 230-243.	0.8	1
2	Hexagonal and Cubic Boron Nitride in Bulk and Nanosized Forms and Their Capacitive Behavior. ChemElectroChem, 2020, 7, 74-77.	1.7	6
3	Comparison of GO and polymer microcapacitors prepared by ion beam writing. Surface and Interface Analysis, 2020, 52, 1171-1177.	0.8	1
4	Microcapacitors on graphene oxide and synthetic polymers prepared by microbeam lithography. Applied Surface Science, 2020, 528, 146802.	3.1	9
5	Cloisite Microrobots as Self-Propelling Cleaners for Fast and Efficient Removal of Improvised Organophosphate Nerve Agents. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31832-31843.	4.0	15
6	2D Stacks of MXene Ti ₃ C ₂ and 1Tâ€Phase WS ₂ with Enhanced Capacitive Behavior. ChemElectroChem, 2019, 6, 3982-3986.	1.7	39
7	Modification of MoS2 structure by means of high energy ions in connection to electrical properties and light element surface adsorption. Surfaces and Interfaces, 2019, 17, 100357.	1.5	9
8	Study of supported CVD graphene irradiated by He and Au ions. Vacuum, 2019, 170, 108952.	1.6	6
9	Localized deoxygenation of graphene oxide foil by ion microbeam writing. Vacuum, 2019, 163, 10-14.	1.6	12
10	Electrochemistry of Layered Semiconducting A ^{III} B ^{VI} Chalcogenides: Indium Monochalcogenides (InS, InSe, InTe). ChemCatChem, 2019, 11, 2634-2642.	1.8	20
11	Layered Crystalline and Amorphous Platinum Disulfide (PtS ₂): Contrasting Electrochemistry. Chemistry - A European Journal, 2019, 25, 7330-7338.	1.7	20
12	Effects of the ion bombardment on the structure and composition of GO and rGO foils. Materials Chemistry and Physics, 2019, 232, 272-277.	2.0	23
13	Damage accumulation and implanted Gd and Au position in a- and c-plane GaN. Thin Solid Films, 2019, 680, 102-113.	0.8	9
14	The Structural and Compositional Changes of Graphene Oxide Induced by Irradiation With 500 keV Helium and Gallium Ions. Physica Status Solidi (B): Basic Research, 2019, 256, 1800409.	0.7	11
15	Damage accumulation and structural modification in a―and câ€plane GaN implanted with 400â€keV and 5â€MeV Au ⁺ ions. Surface and Interface Analysis, 2018, 50, 1099-1105.	0.8	8
16	Damage accumulation and structural modification in c-plane and a-plane GaN implanted with 400†keV Kr and Gd ions. Surface and Coatings Technology, 2018, 355, 22-28.	2.2	6
17	Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem, 2018, 12, 1-9.	2.8	24
18	Graphene oxide layers modified by irradiation with 1.0 MeV Au $<$ sup $>+sup> ions. Surface and Interface Analysis, 2018, 50, 1110-1115.$	0.8	12

#	Article	IF	Citations
19	Structural and optical properties of vanadium ion-implanted GaN. Nuclear Instruments & Methods in Physics Research B, 2017, 406, 53-57.	0.6	2
20	Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties. Physical Chemistry Chemical Physics, 2017, 19, 15914-15923.	1.3	33
21	Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection. Applied Materials Today, 2017, 7, 138-143.	2.3	51
22	Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. Journal of Materials Chemistry A, 2017, 5, 2739-2748.	5.2	87
23	Structural and optical properties of Gd implanted GaN with various crystallographic orientations. Thin Solid Films, 2017, 638, 63-72.	0.8	13
24	Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Advances, 2016, 6, 66884-66892.	1.7	56
25	Synthesis, structure, thermal, transport and magnetic properties of VN ceramics. Ceramics International, 2016, 42, 18779-18784.	2.3	16
26	Graphene Oxide Sorption Capacity toward Elements over the Whole Periodic Table: A Comparative Study. Journal of Physical Chemistry C, 2016, 120, 24203-24212.	1.5	56
27	Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Applied Materials Today, 2016, 4, 45-53.	2.3	87
28	Microwave Exfoliation of Graphite Oxides in H ₂ S Plasma for the Synthesis of Sulfur-Doped Graphenes as Oxygen Reduction Catalysts. ACS Applied Materials & Diterfaces, 2016, 8, 31849-31855.	4.0	39
29	Simple Synthesis of Fluorinated Graphene: Thermal Exfoliation of Fluorographite. Chemistry - A European Journal, 2016, 22, 17696-17703.	1.7	26
30	GaN:Co epitaxial layers grown by MOVPE. Journal of Crystal Growth, 2015, 414, 62-68.	0.7	1
31	Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano, 2015, 9, 2548-2555.	7.3	248
32	Highly selective removal of Ga $3+$ ions from Al $3+$ /Ga $3+$ mixtures using graphite oxide. Carbon, 2015, 89, 121-129.	5.4	36
33	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80
34	Separation of thorium ions from wolframite and scandium concentrates using graphene oxide. Physical Chemistry Chemical Physics, 2015, 17, 25272-25277.	1.3	25
35	Mn doped GaN nanoparticles synthesized by rapid thermal treatment in ammonia. Materials Chemistry and Physics, 2015, 164, 108-114.	2.0	5
36	Towards graphene iodide: iodination of graphite oxide. Nanoscale, 2015, 7, 261-270.	2.8	54

3

#	Article	IF	CITATION
37	Synthesis of InN nanoparticles by rapid thermal ammonolysis. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2
38	Highly selective uptake of Ba ²⁺ and Sr ²⁺ ions by graphene oxide from mixtures of IIA elements. RSC Advances, 2014, 4, 26673-26676.	1.7	21
39	Towards graphene bromide: bromination of graphite oxide. Nanoscale, 2014, 6, 6065-6074.	2.8	109
40	Uranium- and Thorium-Doped Graphene for Efficient Oxygen and Hydrogen Peroxide Reduction. ACS Nano, 2014, 8, 7106-7114.	7.3	73
41	Fluorographenes via thermal exfoliation of graphite oxide in SF ₆ , SF ₄ and MoF ₆ atmospheres. Journal of Materials Chemistry C, 2014, 2, 5198-5207.	2.7	30
42	Phaseâ€Transfer Catalysis in Oxidations Based on the Covalent Bonding of Hydrogen Peroxide to Amphiphilic Flavinium Salts. ChemCatChem, 2014, 6, 2843-2846.	1.8	13
43	DSC study and phase diagrams calculation of binary systems of paracetamol. Thermochimica Acta, 2012, 550, 59-64.	1.2	44