
Mykhaylo Yu Losytskyy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8962746/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and spectral characterization of the first fluorescein-tagged iron(<scp>ii</scp>) clathrochelates, their supramolecular interactions with globular proteins, and cellular uptake. RSC Advances, 2021, 11, 8163-8177.	3.6	10
2	Modification of insulin amyloid aggregation by Zr phthalocyanines functionalized with dehydroacetic acid derivatives. PLoS ONE, 2021, 16, e0243904.	2.5	8
3	Study of tetraphenylporphyrins as modifiers of insulin amyloid aggregation. Journal of Molecular Recognition, 2020, 33, e2811.	2.1	8
4	Sensing of Proteins by ICD Response of Iron(II) Clathrochelates Functionalized by Carboxyalkylsulfide Groups. Biomolecules, 2020, 10, 1602.	4.0	11
5	Fluorescent <i>β</i> -ketoenole AmyGreen dye for visualization of amyloid components of bacterial biofilms. Methods and Applications in Fluorescence, 2020, 8, 035006.	2.3	13
6	Dicarboxyl-terminated iron(<scp>ii</scp>) clathrochelates as ICD-reporters for globular proteins. RSC Advances, 2019, 9, 24218-24230.	3.6	13
7	Induced CD of iron(<scp>ii</scp>) clathrochelates: sensing of the structural and conformational alterations of serum albumins. Metallomics, 2019, 11, 338-348.	2.4	15
8	Different effect of polymer-incorporated nanoparticles of Au and Ag on hematoporphyrin interaction with graft polymers. Functional Materials, 2019, 26, 107-113.	0.1	2
9	Induced chirality of cage metal complexes switched by their supramolecular and covalent binding. Dalton Transactions, 2018, 47, 1036-1052.	3.3	17
10	Characterization of the Interaction between Phthalocyanine and Amyloid Fibrils by Surface-Enhanced Raman Scattering (SERS). Analytical Letters, 2018, 51, 221-228.	1.8	2
11	Activity of Zn and Mg phthalocyanines and porphyrazines in amyloid aggregation of insulin. Journal of Molecular Recognition, 2018, 31, e2660.	2.1	7
12	Uptake of Chlorin e6 Photosensitizer by Polystyrene-Diphenyloxazole-Poly(N-Isopropylacrylamide) Hybrid Nanosystem Studied by Electronic Excitation Energy Transfer. Nanoscale Research Letters, 2018, 13, 166.	5.7	5
13	Design of functionalized β-ketoenole derivatives as efficient fluorescent dyes for detection of amyloid fibrils. New Journal of Chemistry, 2018, 42, 13308-13318.	2.8	15
14	Metal-enhanced fluorescence of the trimethine cyanine dyes complexed with amyloid fibrils. Journal of Luminescence, 2018, 204, 209-215.	3.1	2
15	N-alkylaryl styrylcyanine dyes as fluorescent probes for nucleic acids detection. Biopolymers and Cell, 2018, 34, 374-386.	0.4	2
16	Some peculiarities of spectral proprieties of leukocytes. Molecular Crystals and Liquid Crystals, 2017, 642, 81-88.	0.9	1
17	Energy Transfer in Ce0.85Tb0.15F3 Nanoparticles-CTAB Shell-Chlorin e6 System. Nanoscale Research Letters, 2017, 12, 294.	5.7	8
18	Effective binding of perhalogenated closo -borates to serum albumins revealed by spectroscopic and ITC studies, lournal of Molecular Structure, 2017, 1141, 75-80.	3.6	11

ΜΥΚΗΑΥΙΟ Υυ LOSYTSKYY

#	Article	IF	CITATIONS
19	The impact of binding of macrocyclic metal complexes on amyloid fibrillization of insulin and lysozyme. Journal of Molecular Recognition, 2017, 30, e2622.	2.1	20
20	The manifestation of optical centers in UV–Vis absorption and luminescence spectra of white blood human cells. Methods and Applications in Fluorescence, 2016, 4, 044010.	2.3	6
21	Polystyrene-diphenyloxazole-chlorin e ₆ nanosystem for PDT: Energy transfer study. Molecular Crystals and Liquid Crystals, 2016, 639, 169-176.	0.9	6
22	β-ketoenole dyes: Synthesis and study as fluorescent sensors for protein amyloid aggregates. Dyes and Pigments, 2016, 132, 274-281.	3.7	10
23	An interaction of the functionalized closo -borates with albumins: The protein fluorescence quenching and calorimetry study. Journal of Luminescence, 2016, 169, 51-60.	3.1	35
24	Sensing the temperature influence on plasmonic field of metal nanoparticles by photoluminescence of fullerene C60 in layered C60/Au system. Journal of Applied Physics, 2015, 117, 153102.	2.5	2
25	Trimethine cyanine dyes as fluorescent probes for amyloid fibrils: The effect of N,N′-substituents. Analytical Biochemistry, 2015, 484, 9-17.	2.4	17
26	Photoluminescence of rhodamine 6G in plasmonic field of Au nanoparticles: Temperature effects. Journal of Luminescence, 2015, 158, 294-300.	3.1	13
27	Energy Transfer in Polystyrene Nanoparticles with Encapsulated 2,5-Diphenyloxazole. French-Ukrainian Journal of Chemistry, 2015, 3, 119-124.	0.4	3
28	Anti-fibrillogenic properties of phthalocyanines: Effect of the out-of-plane ligands. Bioorganic and Medicinal Chemistry, 2014, 22, 6918-6923.	3.0	11
29	Surface plasmon enhanced photoluminescence from copper nanoparticles: Influence of temperature. Journal of Applied Physics, 2014, 116, .	2.5	21
30	Temperature Dependence of Photoluminescence from Silver Nanoparticles. Plasmonics, 2014, 9, 93-101.	3.4	16
31	Fluorescent Detection of a Partially Unfolded Conformation of Beta‣actoglobulin Using Squaraine Dyes. Macromolecular Symposia, 2014, 335, 43-50.	0.7	0
32	Study of anti-fibrillogenic activity of iron(II) clathrochelates. Bioorganic and Medicinal Chemistry, 2014, 22, 1883-1888.	3.0	33
33	Development of a quantitative structure activity relations (QSAR) model to guide the design of fluorescent dyes for detecting amyloid fibrils. Biotechnic and Histochemistry, 2014, 89, 1-7.	1.3	4
34	Effect of Polyacrylamide and Dextran-Polyacrylamide Graft Polymers on Absorption and Fluorescence Spectra of Hematoporphyrin. Molecular Crystals and Liquid Crystals, 2014, 589, 226-231.	0.9	4
35	Experimental Approach Using Covalently Attached Fluorophore for Quantification of Oligonucleotide Immobilization on Gold Nanoparticles. Colloids and Interface Science Communications, 2014, 1, 35-38.	4.1	3
36	Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein. Biopolymers and Cell, 2014, 30, 190-196.	0.4	1

Mykhaylo Yu Losytskyy

#	Article	IF	CITATIONS
37	Interaction of the Iron(II) Cage Complexes With Proteins: Protein Fluorescence Quenching Study. Journal of Fluorescence, 2013, 23, 889-895.	2.5	25
38	Towards the anti-fibrillogenic activity of phthalocyanines with out-of-plane ligands: correlation with self-association proneness. Biopolymers and Cell, 2013, 29, 473-479.	0.4	11
39	Tri- and Pentamethine Cyanine Dyes for Fluorescent Detection of α-Synuclein Oligomeric Aggregates. Journal of Fluorescence, 2012, 22, 1441-1448.	2.5	30
40	Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye. Analytical Biochemistry, 2012, 420, 115-120.	2.4	18
41	Studies of anti-fibrillogenic activity of phthalocyanines of zirconium containing out-of-plane ligands. Bioorganic and Medicinal Chemistry, 2012, 20, 330-334.	3.0	19
42	Influence of Surface-Active Stabilizers on Porphyrin – Gold Nanoparticles Absorption and Fluorescence. Molecular Crystals and Liquid Crystals, 2011, 536, 17/[249]-23/[255].	0.9	2
43	Mono and Trimethine Cyanines Cyan 40 and Cyan 2 as Probes for Highly Selective Fluorescent Detection of Non-canonical DNA Structures. Journal of Fluorescence, 2011, 21, 223-230.	2.5	19
44	Hydroxy and Methoxy Substituted Thiacarbocyanines for Fluorescent Detection of Amyloid Formations. Journal of Fluorescence, 2011, 21, 775-784.	2.5	15
45	Aza-substituted squaraines for the fluorescent detection of albumins. Dyes and Pigments, 2011, 90, 41-47.	3.7	33
46	Styryl Dyes as Two-Photon Excited Fluorescent Probes for DNA Detection and Two-Photon Laser Scanning Fluorescence Microscopy of Living Cells. Journal of Fluorescence, 2010, 20, 865-872.	2.5	27
47	Studies of Interaction Between Cyanine Dye T-284 and Fibrillar Alpha-Synuclein. Journal of Fluorescence, 2010, 20, 1267-1274.	2.5	12
48	2-Quinolone and coumarin polymethines for the detection of proteins using fluorescence. Dyes and Pigments, 2010, 84, 159-164.	3.7	27
49	Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Physical Review B, 2009, 79, .	3.2	139
50	The Mechanism of Benzothiazole Styrylcyanine Dyes Binding with dsDNA: Studies by Spectral-Luminescent Methods. Journal of Fluorescence, 2008, 18, 139-147.	2.5	18
51	Studies of Benzothiazole and Benzoselenazole Squaraines as Fluorescent Probes for Albumins Detection. Journal of Fluorescence, 2008, 18, 877-882.	2.5	24
52	Specific fluorescent detection of fibrillar α-synuclein using mono- and trimethine cyanine dyes. Bioorganic and Medicinal Chemistry, 2008, 16, 1452-1459.	3.0	62
53	Symmetric cyanine dyes for detecting nucleic acids. Biotechnic and Histochemistry, 2008, 83, 131-145.	1.3	39
54	Optical Biomedical Diagnostics: Sensors with Optical Response Based on Two-Photon Excited Luminescent Dyes for Biomolecules Detection. Advances in Optical Technologies, 2008, 2008, 1-11.	0.8	6

Mykhaylo Yu Losytskyy

#	Article	IF	CITATIONS
55	The optical biomedical sensors for DNA detection and imaging based on two-photon excited luminescent styryl dyes: phototoxic influence on the DNA. Proceedings of SPIE, 2007, , .	0.8	3
56	Two-Photon Excited Luminescent Styryl Dyes as Probes for the DNA Detection and Imaging. Photostability and Phototoxic Influence on DNA. Molecular Crystals and Liquid Crystals, 2007, 467, 325-338.	0.9	15
57	Electronic Excitation Energy Transfer in DNA. Nature of Triplet Excitations Capturing Centers. Molecular Crystals and Liquid Crystals, 2007, 467, 311-323.	0.9	19
58	Synthesis and spectral–luminescent studies of novel 4-oxo-4,6,7,8-tetrahydropyrrolo[1,2-a]thieno[2,3-d]pyrimidinium styryls as fluorescent dyes for biomolecules detection. Dyes and Pigments, 2007, 75, 25-31.	3.7	25
59	Novel, Monomeric Cyanine Dyes as Reporters for DNA Helicase Activity. Journal of Fluorescence, 2007, 17, 671-685.	2.5	12
60	Synthesis of novel fluorescent styryl dyes based on the imidazo[1,2-a]pyridinium chromophore and their spectral-fluorescent properties in the presence of nucleic acids and proteins. Dyes and Pigments, 2006, 68, 39-45.	3.7	26
61	The nature of the electronic excitations capturing centres in the DNA. Journal of Molecular Liquids, 2006, 127, 79-83.	4.9	25
62	6,6′-Disubstituted benzothiazole trimethine cyanines – new fluorescent dyes for DNA detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 271-277.	3.9	40
63	Fluorescence of Styryl Dyes-DNA Complexes Induced by Single- and Two-Photon Excitation. Journal of Fluorescence, 2006, 16, 783-791.	2.5	37
64	Studies of monomeric and homodimeric oxazolo[4,5-b]pyridinium cyanine dyes as fluorescent probes for nucleic acids visualization. Journal of Proteomics, 2006, 68, 155-165.	2.4	17
65	Fluorescent homodimer styrylcyanines: synthesis and spectral-luminescent studies in nucleic acids and protein complexes. Dyes and Pigments, 2005, 67, 47-54.	3.7	88
66	Fluorescent Properties of Pentamethine Cyanine Dyes with Cyclopentene and Cyclohexene Group in Presence of Biological Molecules. Journal of Fluorescence, 2005, 15, 849-857.	2.5	20
67	Luminescence spectroscopic studies of trimethinecyanines substituted in polymethine chain with nucleic acids and proteins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 129-136.	3.9	14
68	The mechanism of interaction of monomethine cyanine dye Cyan 40 with dsDNA: computer modelling. Biopolymers and Cell, 2003, 19, 93-98.	0.4	1
69	Interaction of cyanine dyes with nucleic acids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 3223-3232.	3.9	44
70	Nonradiative deactivation of the electronic excitation energy in cyanine dyes: influence of binding to DNA. Journal of Photochemistry and Photobiology B: Biology, 2002, 67, 57-63.	3.8	14
71	Davydov Splitting in Spectra of Cyanine Dye J-Aggregates, Formed on the Polynucleotides. Journal of Fluorescence, 2002, 12, 109-112.	2.5	18
72	Interaction of cyanine dyes with nucleic acids. New (pyrido)(thio)trimethincyanine dye CCyan 40 for fluorescent labeling of oligonucleotides. Biopolymers and Cell, 2002, 18, 340-346.	0.4	3

#	Article	IF	CITATIONS
73	Proteins and cyanine dyes. Part III. Synthesis and spectroscopic studies of benzothiazolo-4-[1,2,6-trimethylpyridinium] monomethine cyanine dyes for fluorescent detection of bovine serum albumin in solutions. Dyes and Pigments, 2001, 51, 41-49.	3.7	35
74	Interactions of cyanine dyes with nucleic acids. XXIV. Aggregation of monomethine cyanine dyes in presence of DNA and its manifestation in absorption and fluorescence spectra. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1525-1532.	3.9	53
75	Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2705-2715.	3.9	34
76	Interaction of cyanine dyes with nucleic acids. XXI. Arguments for half-intercalation model of interaction. Biopolymers, 2001, 62, 219-227.	2.4	48
77	Interaction of cyanine dyes with nucleic acids. 7. Carbocyanine dyes, substituted in polymethine chain, as possible probes for fluorescent nucleic acid detection. Biopolymers and Cell, 2001, 17, 169-177.	0.4	12
78	Interaction of cyanine dyes with nucleic acids. 22. Spectral-luminescent properties of monomethyne pyrylium and pyrymidinium cyanines and their DNA-complexes. Biopolymers and Cell, 2001, 17, 242-248.	0.4	5
79	Interaction of cyanine dyes with nucleic acids. Meso-methylsubstituted trimethincyanines, as possible probes for fluorescent nucleic acid detection. Biopolymers and Cell, 2001, 17, 448-454.	0.4	4
80	Interaction of cyanine dyes with nucleic acids. XVII. Towards an aggregation of cyanine dyes in solutions as a factor facilitating nucleic acid detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 805-814.	3.9	42
81	Interaction of cyanlne dyes with nucleic acids. 9. The study of spectral properties of cyanine dyes-DNA complexes in the presence of organic solvents. Biopolymers and Cell, 2000, 16, 75-81.	0.4	2
82	Interaction of cyanine dyes with nucleic acids. 14. Spectral peculiarities of several monomethyne benzothiazole cyanine dyes and their interaction with DNA. Biopolymers and Cell, 2000, 16, 345-355.	0.4	6
83	The interaction of cyanine dyes with nucleic acids. 12. Novel monomethyne cyanines based on the 5,6-methylenedioxy-benzothiazole and spectral-luminescent properties of thier complexes with nucleic acids. Biopolymers and Cell. 2000, 16, 562-572	0.4	7