
Yvon Cordier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8962453/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination of selective area sublimation of p-GaN and regrowth of AlGaN for the co-integration of enhancement mode and depletion mode high electron mobility transistors. Solid-State Electronics, 2022, 188, 108210.	1.4	5
2	Transport characteristics of AlGaN/GaN structures for amplification of terahertz radiations. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	0
3	Micro-Raman characterization of homo-epitaxial n doped GaN layers for vertical device applications. AIP Advances, 2022, 12, 025126.	1.3	4
4	Temperature and Gate-Length Dependence of Subthreshold RF Detection in GaN HEMTs. Sensors, 2022, 22, 1515.	3.8	5
5	Transport properties of a thin GaN channel formed in an Al _{0.9} Ga _{0.1} N/GaN heterostructure grown on AlN/sapphire template. Journal of Applied Physics, 2022, 131, 124501.	2.5	2
6	A 5.7 THz GaN/AlGaN quantum cascade detector based on polar step quantum wells. Applied Physics Letters, 2022, 120, .	3.3	4
7	Selective sublimation of GaN and regrowth of AlGaN to co-integrate enhancement mode and depletion mode high electron mobility transistors. Journal of Crystal Growth, 2022, , 126779.	1.5	0
8	AlGaN Channel High Electron Mobility Transistors with Regrown Ohmic Contacts. Electronics (Switzerland), 2021, 10, 635.	3.1	27
9	Characterization of m-GaN and a-GaN Crystallographic Planes after Being Chemically Etched in TMAH Solution. Energies, 2021, 14, 4241.	3.1	12
10	New barrier layer design for the fabrication of gallium nitride-metal-insulator-semiconductor-high electron mobility transistor normally-off transistor. Semiconductor Science and Technology, 2021, 36, 034002.	2.0	2
11	Stability of the threshold voltage in fluorine-implanted normally-off AlN/GaN HEMTs co-integrated with commercial normally-on GaN HEMT technology. Microelectronics Reliability, 2021, 126, 114291.	1.7	6
12	Selective GaN sublimation and local area regrowth for co-integration of enhancement mode and depletion mode Al(Ga)N/GaN high electron mobility transistors. Semiconductor Science and Technology, 2021, 36, 024001.	2.0	3
13	Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition. Nanotechnology, 2021, 32, 015705.	2.6	6
14	Metalorganic Chemical Vapor Phase Epitaxy Growth of Buffer Layers on 3C‣iC/Si(111) Templates for AlGaN/GaN High Electron Mobility Transistors with Low RF Losses. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900760.	1.8	8
15	Cathodoluminescence and electrical study of vertical GaN-on-GaN Schottky diodes with dislocation clusters. Journal of Crystal Growth, 2020, 552, 125911.	1.5	4
16	Electrical activity at the AlN/Si Interface: identifying the main origin of propagation losses in GaN-on-Si devices at microwave frequencies. Scientific Reports, 2020, 10, 14166.	3.3	20
17	AlCaN/CaN high electron mobility transistors on diamond substrate obtained through aluminum nitride bonding technology. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	7
18	Trapping Dipolar Exciton Fluids in GaN/(AlGa)N Nanostructures. Nano Letters, 2019, 19, 4911-4918.	9.1	9

#	Article	IF	CITATIONS
19	High Lateral Breakdown Voltage in Thin Channel AlGaN/GaN High Electron Mobility Transistors on AlN/Sapphire Templates. Micromachines, 2019, 10, 690.	2.9	28
20	High-Performance Graphene/AlGaN/GaN Schottky Junctions for Hot Electron Transistors. ACS Applied Electronic Materials, 2019, 1, 2342-2354.	4.3	35
21	2 W mm ^{â^'1} power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz. Semiconductor Science and Technology, 2019, 34, 12LT01.	2.0	10
22	Kapitza thermal resistance characterization of epitaxial graphene–SiC(0001) interface. Applied Physics Letters, 2019, 114, .	3.3	6
23	Structural and electrical properties of AlN thin films on GaN substrates grown by plasma enhanced-Atomic Layer Deposition. Materials Science in Semiconductor Processing, 2019, 97, 35-39.	4.0	11
24	Terahertz intersubband absorption of GaN/AlGaN step quantum wells grown by MOVPE on Si(111) and Si(110) substrates. Applied Physics Letters, 2019, 115, .	3.3	6
25	Buried defects induced by plasma assisted molecular beam epitaxy of AlN and GaN on Silicon. Journal of Crystal Growth, 2019, 507, 220-225.	1.5	2
26	Crack Statististics and Stress Analysis of Thick GaN on Patterned Silicon Substrate. Physica Status Solidi (B): Basic Research, 2018, 255, 1700399.	1.5	3
27	Influence of AIN Growth Temperature on the Electrical Properties of Buffer Layers for GaN HEMTs on Silicon. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700637.	1.8	22
28	AlGaN/GaN/AlGaN DHâ€HEMTs Grown on a Patterned Silicon Substrate. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700642.	1.8	6
29	Optical and Thermal Performances of (Ga,In)N/GaN Light Emitting Diodes Transferred on a Flexible Tape. IEEE Photonics Technology Letters, 2018, 30, 1567-1570.	2.5	4
30	A comparative study of graphene growth on SiC by hydrogen-CVD or Si sublimation through thermodynamic simulations. CrystEngComm, 2018, 20, 3702-3710.	2.6	8
31	Hot Electron Transistors with Graphene Base for THz Electronics. , 2018, , 95-115.		2
32	High temperature annealing and CVD growth of few-layer graphene on bulk AlN and AlN templates. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600436.	1.8	10
33	Recent improvements of flexible GaN-based HEMT technology. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600484.	1.8	18
34	Anomalous DC and RF behavior of virgin AlGaN/AlN/GaN HEMTs. Semiconductor Science and Technology, 2017, 32, 035011.	2.0	9
35	Trap states analysis in AlGaN/AlN/GaN and InAlN/AlN/GaN high electron mobility transistors. Current Applied Physics, 2017, 17, 1601-1608.	2.4	13
36	Influence of metal-organic vapor phase epitaxy parameters and Si(111) substrate type on the properties of AlGaN/GaN HEMTs with thin simple buffer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600419.	1.8	5

#	Article	IF	CITATIONS
37	Graphene integration with nitride semiconductors for high power and high frequency electronics. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600460.	1.8	38
38	A combined growth process for state-of-the-art GaN on silicon. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600449.	1.8	4
39	Homoepitaxy of non-polar ZnO/(Zn,Mg)O multi-quantum wells: From a precise growth control to the observation of intersubband transitions. Applied Physics Letters, 2017, 111, .	3.3	32
40	Characterization and modeling of traps and RF frequency dispersion in AlGaN/AlN/GaN HEMTs. , 2016, , .		0
41	Piezoelectric MEMS resonators based on ultrathin epitaxial GaN heterostructures on Si. Journal of Micromechanics and Microengineering, 2016, 26, 105015.	2.6	4
42	Impact of the Bending on the Electroluminescence of Flexible InGaN/GaN Light-Emitting Diodes. IEEE Photonics Technology Letters, 2016, 28, 1661-1664.	2.5	6
43	Development of technological building blocks for the monolithic integration of ammonia-MBE-grown GaN-HEMTs with silicon CMOS. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 917-924.	1.8	1
44	First Power Performance Demonstration of Flexible AlGaN/GaN High Electron Mobility Transistor. IEEE Electron Device Letters, 2016, 37, 553-555.	3.9	24
45	Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy. Nuclear Instruments & Methods in Physics Research B, 2016, 372, 67-71.	1.4	3
46	Room-Temperature AlGaN/GaN Terahertz Plasmonic Detectors with a Zero-Bias Grating. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 243-257.	2.2	13
47	GaN films and GaN/AlGaN quantum wells grown by plasma assisted molecular beam epitaxy using a high density radical source. Journal of Crystal Growth, 2016, 433, 165-171.	1.5	6
48	Growth of nitrideâ€based light emitting diodes with a highâ€reflectivity distributed Bragg reflector on mesaâ€patterned silicon substrate. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2297-2301.	1.8	9
49	Al(Ga)N/GaN high electron mobility transistors on silicon. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1049-1058.	1.8	13
50	Highly resistive epitaxial Mg-doped GdN thin films. Applied Physics Letters, 2015, 106, .	3.3	18
51	Reduction of the thermal budget of AlGaN/GaN heterostructures grown on silicon: A step towards monolithic integration of GaNâ€HEMTs with CMOS. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1145-1152.	1.8	5
52	Erratum to "Gallium Nitride as an Electromechanical Material―[Dec 14 1252-1271]. Journal of Microelectromechanical Systems, 2015, 24, 249-249.	2.5	0
53	Nanoscale conductive pattern of the homoepitaxial AlGaN/GaN transistor. Nanotechnology, 2015, 26, 115203.	2.6	14
54	Power Performance at 40 GHz of AlGaN/GaN High-Electron Mobility Transistors Grown by Molecular Beam Epitaxy on Si(111) Substrate. IEEE Electron Device Letters, 2015, 36, 303-305.	3.9	55

#	Article	IF	CITATIONS
55	On the correlation between kink effect and effective mobility in InAlN/GaN HEMTs. , 2014, , .		9
56	Integration of Micro Resistance Thermometer Detectors in AlGaN/GaN Devices. IEEE Journal of the Electron Devices Society, 2014, 2, 145-148.	2.1	13
57	Gallium Nitride as an Electromechanical Material. Journal of Microelectromechanical Systems, 2014, 23, 1252-1271.	2.5	173
58	Graphene growth on AlN templates on silicon using propane-hydrogen chemical vapor deposition. Applied Physics Letters, 2014, 104, .	3.3	17
59	Magnetic properties of Gdâ€doped GaN. Physica Status Solidi (B): Basic Research, 2014, 251, 1673-1684.	1.5	13
60	GaN high electron mobility transistors on silicon substrates with MBE/PVD AlN seed layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 498-501.	0.8	4
61	AlGaN/GaN HEMTs with very thin buffer on Si (111) for nanosystems applications. Semiconductor Science and Technology, 2014, 29, 115018.	2.0	9
62	Molecular beam epitaxy of ferromagnetic epitaxial GdN thin films. Journal of Crystal Growth, 2014, 404, 146-151.	1.5	18
63	Influence of 3C–SiC/Si (111) template properties on the strain relaxation in thick GaN films. Journal of Crystal Growth, 2014, 398, 23-32.	1.5	13
64	Young's modulus extraction of epitaxial heterostructure AlGaN/GaN for MEMS application. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1655-1659.	1.8	14
65	Magnetotransport in a two-subband AlGaN/GaN heterostructure in the presence of mixed disorder. EPJ Applied Physics, 2014, 68, 20102.	0.7	1
66	Magnetotransport studies of AlGaN/GaN heterostructures with two-dimensional electron gas in parallel with a three-dimensional Al-graded layer: Incorrect hole type determination. Journal of Applied Physics, 2013, 114, 023704.	2.5	0
67	Room temperature generation of THz radiation in GaN quantum wells structures. Proceedings of SPIE, 2013, , .	0.8	Ο
68	Stress distribution of 12 μm thick crack free continuous GaN on patterned Si(110) substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 425-428.	0.8	12
69	Optimization of \${m Al}_{0.29}{m Ga}_{0.71}{m N}/{m GaN}\$ High Electron Mobility Heterostructures for High-Power/Frequency Performances. IEEE Transactions on Electron Devices, 2013, 60, 3105-3111.	3.0	22
70	Molecular beam epitaxial AlGaN/GaN high electron mobility transistors leakage thermal activation on silicon and sapphire. Applied Physics Letters, 2013, 102, .	3.3	4
71	Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons. Physical Review B, 2013, 87, .	3.2	56
72	Fabrication, Characterization, and Physical Analysis of AlGaN/GaN HEMTs on Flexible Substrates. IEEE Transactions on Electron Devices, 2013, 60, 1054-1059.	3.0	19

#	Article	IF	CITATIONS
73	Power Performance of AlGaN/GaN High-Electron-Mobility Transistors on (110) Silicon Substrate at 40 GHz. IEEE Electron Device Letters, 2013, 34, 490-492.	3.9	48
74	AlGaN/GaN HEMTs with an InGaN backâ€barrier grown by ammoniaâ€assisted molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 480-483.	1.8	11
75	Analysis of the AlGaN/GaN vertical bulk current on Si, sapphire, and free-standing GaN substrates. Journal of Applied Physics, 2013, 113, .	2.5	57
76	Assessment of transistors based on GaN on silicon substrate in view of integration with silicon technology. Semiconductor Science and Technology, 2013, 28, 094003.	2.0	9
77	Role of magnetic polarons in ferromagnetic GdN. Physical Review B, 2013, 87, .	3.2	40
78	Gate traps inducing band-bending fluctuations on AlGaN/GaN heterojunction transistors. Applied Physics Letters, 2013, 102, 023511.	3.3	15
79	Terahertz transmission and effective gain measurement of two-dimensional electron gas. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1454-1458.	1.8	2
80	Delta-Doping of Epitaxial GaN Layers on Large Diameter Si(111) Substrates. Applied Physics Express, 2012, 5, 025504.	2.4	9
81	Temperature impact and analytical modeling of the AlGaN/GaN-on-Si saturation drain current and transconductance. Semiconductor Science and Technology, 2012, 27, 125010.	2.0	18
82	Effects of substrate orientation on the optical anisotropy spectra of GaN/AlN/Si heterostructures in the energy range from 2.0 to 3.5 eV. Journal of Applied Physics, 2012, 111, .	2.5	6
83	Graphene/SiC Interface Control Using Propane-Hydrogen CVD on 6H-SiC(0001) and 3C-SiC(111)/Si(111). Materials Science Forum, 2012, 711, 253-257.	0.3	4
84	Bias Dependence of Gallium Nitride Micro-Electro-Mechanical Systems Actuation Using a Two-Dimensional Electron Gas. Applied Physics Express, 2012, 5, 067201.	2.4	7
85	Bulk Temperature Impact on the AlGaN/GaN HEMT Forward Current on Si, Sapphire and Free-Standing GaN. ECS Solid State Letters, 2012, 2, P4-P7.	1.4	10
86	Fabrication and growth of GaN-based micro and nanostructures. International Journal of Nanotechnology, 2012, 9, 412.	0.2	6
87	Effect of carbon doping on crystal quality, electrical isolation and electron trapping in GaN based structures grown silicon substrates. Solid-State Electronics, 2012, 75, 86-92.	1.4	24
88	Gate current analysis of AlGaN/GaN on silicon heterojunction transistors at the nanoscale. Applied Physics Letters, 2012, 101, 093505.	3.3	18
89	Nanoscale investigation of AlGaN/GaN-on-Si high electron mobility transistors. Nanotechnology, 2012, 23, 395204.	2.6	13
90	Growth optimization and characterization of lattice-matched Al0.82In0.18N optical confinement layer for edge emitting nitride laser diodes. Journal of Crystal Growth, 2012, 338, 20-29.	1.5	10

#	Article	IF	CITATIONS
91	Growth mode and electric properties of graphene and graphitic phase grown by argon–propane assisted CVD on 3C–SiC/Si and 6H–SiC. Journal of Crystal Growth, 2012, 349, 27-35.	1.5	27
92	Reverse current thermal activation of AlGaN/GaN HEMTs on Si(111). Microelectronics Reliability, 2012, 52, 2547-2550.	1.7	3
93	Analysis of the SiO ₂ /Si ₃ N ₄ passivation bilayer thickness on the rectifier behavior of AlGaN/GaN HEMTs on (111) silicon substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1083-1087.	0.8	4
94	Influence of nitrogen precursor and its flow rate on the quality and the residual doping in GaN grown by molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 523-526.	0.8	5
95	Electromechanical Transconductance Properties of a GaN MEMS Resonator With Fully Integrated HEMT Transducers. Journal of Microelectromechanical Systems, 2012, 21, 370-378.	2.5	82
96	Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure. Applied Physics Letters, 2011, 99, 082101.	3.3	13
97	RF Performance of AlGaN/GaN High-Electron-Mobility Transistors Grown on Silicon (110). Applied Physics Express, 2011, 4, 064105.	2.4	17
98	Micro and nano analysis of 0.2 Ω mm Ti/Al/Ni/Au ohmic contact to AlGaN/GaN. Applied Physics Letters, 2011, 99, 213504.	3.3	47
99	Gallium nitride approach for MEMS resonators with highly tunable piezo-amplified transducers. , 2011, , \cdot		1
100	GaN Ohmic contact resistance vs temperature. , 2011, , .		3
101	Effect of surface preparation and interfacial layer on the quality of SiO2/GaN interfaces. Journal of Applied Physics, 2011, 109, .	2.5	33
102	Temperature dependence of Al/Ti-based Ohmic contact to GaN devices: HEMT and MOSFET. Microelectronic Engineering, 2011, 88, 3140-3144.	2.4	24
103	Growth of thick, continuous GaN layers on 4-in. Si substrates by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2011, 314, 85-91.	1.5	100
104	Growth of GaN based structures on focused ion beam patterned templates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1516-1519.	0.8	2
105	Growth of thick GaN layers on 4â€in. and 6â€in. silicon (111) by metalâ€organic vapor phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1479-1482.	0.8	42
106	Thermal effects in AlGaN/GaN/Si high electron mobility transistors. Solid-State Electronics, 2011, 61, 1-6.	1.4	26
107	Dyakonov-Perel electron spin relaxation in a wurtzite semiconductor: From the nondegenerate to the highly degenerate regime. Physical Review B, 2011, 84, .	3.2	23
108	GaN: A multifunctional material enabling MEMS resonators based on amplified piezoelectric detection. , 2011, , .		5

#	Article	IF	CITATIONS
109	Voltage Controlled Terahertz Transmission Enhancement through GaN Quantum Wells. Acta Physica Polonica A, 2011, 119, 107-110.	0.5	1
110	Measurement of Pulsed Current-Voltage Characteristics of AlGaN/GaN HEMTs from Room Temperature to 15 K. Acta Physica Polonica A, 2011, 119, 196-198.	0.5	4
111	Growth of GaN based structures on Si(110) by molecular beam epitaxy. Journal of Crystal Growth, 2010, 312, 2683-2688.	1.5	25
112	AlGaN/GaN HEMTs on (001) Silicon Substrate With Power Density Performance of 2.9 W/mm at 10 GHz. IEEE Transactions on Electron Devices, 2010, 57, 1497-1503.	3.0	24
113	Deposited Thin SiO[sub 2] for Gate Oxide on n-Type and p-Type GaN. Journal of the Electrochemical Society, 2010, 157, H1008.	2.9	20
114	Comparison of GaN-based MOS structures with different interfacial layer treatments. , 2010, , .		0
115	Enhanced terahertz transmission of GaN quantum wells. , 2010, , .		0
116	GaN transistor characteristics at elevated temperatures. Journal of Applied Physics, 2009, 106, .	2.5	67
117	Amplified piezoelectric transduction of nanoscale motion in gallium nitride electromechanical resonators. Applied Physics Letters, 2009, 94, .	3.3	110
118	The critical role of growth temperature on the structural and electrical properties of AlGaN/GaN high electron mobility transistor heterostructures grown on Si(111). Journal of Applied Physics, 2009, 105, 033701.	2.5	50
119	Windowed growth of AlGaN/GaN heterostructures on Silicon ã€^111〉 substrates for future MOS integration. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 371-374.	1.8	5
120	Luminescence and reflectivity characterization of AlGaN/GaN high electron mobility transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S715.	0.8	1
121	Evaluation of SiN films for AlGaN/GaN MISâ€HEMTs on Si(111). Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S1016.	0.8	6
122	AlGaN/GaN high electron mobility transistor grown by molecular beam epitaxy on Si(110): comparisons with Si(111) and Si(001). Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S1020.	0.8	13
123	Selective area growth of GaN-based structures by molecular beam epitaxy on micrometer and nanometer size patterns. Materials Science in Semiconductor Processing, 2009, 12, 16-20.	4.0	6
124	High temperature behaviour of AlGaN/AlN/GaN Hall-FET sensors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 1-4.	3.5	9
125	Elaboration of (111) oriented 3C–SiC/Si layers for template application in nitride epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 9-14.	3.5	28
126	Strain engineering in GaN layers grown on silicon by molecular beam epitaxy: The critical role of growth temperature. Journal of Crystal Growth, 2009, 311, 2002-2005.	1.5	23

#	Article	IF	CITATIONS
127	Advances in quality and uniformity of (Al,Ga)N/GaN quantum wells grown by molecular beam epitaxy with plasma source. Journal of Crystal Growth, 2009, 311, 2029-2032.	1.5	7
128	Analysis of the C-V characteristic in SiO <inf>2</inf> /GaN MOS capacitors. , 2009, , .		0
129	Signature of monolayer and bilayer fluctuations in the width of (Al,Ga)N/GaN quantum wells. Physical Review B, 2009, 79, .	3.2	9
130	Preliminary results of bench implementation for the study of terahertz amplification in gallium nitride quantum wells. Journal of Physics: Conference Series, 2009, 193, 012094.	0.4	0
131	High temperature behaviour of GaN HEMT devices on Si(111) and sapphire substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1971-1973.	0.8	21
132	Realization of AlGaN/GaN HEMTs on 3C‣iC/Si(111) substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1983-1985.	0.8	9
133	Subsurface Fe-doped semi-insulating GaN templates for inhibition of regrowth interface pollution in AlGaN/GaN HEMT structures. Journal of Crystal Growth, 2008, 310, 948-954.	1.5	13
134	AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111). Journal of Crystal Growth, 2008, 310, 4417-4423.	1.5	41
135	Composition analysis of semiconductor quantum wells by energy filtered convergent-beam electron diffraction. Ultramicroscopy, 2008, 108, 358-366.	1.9	6
136	Demonstration of AlGaN/GaN High-Electron-Mobility Transistors Grown by Molecular Beam Epitaxy on Si(110). IEEE Electron Device Letters, 2008, 29, 1187-1189.	3.9	44
137	Growth of AlGaN/GaN HEMTs on Silicon Substrates by MBE. Materials Research Society Symposia Proceedings, 2008, 1068, 1.	0.1	Ο
138	Anomalous Hall Effect in Gd-implanted Wurtzite Al _{<i>x</i>} Ga _{1-<i>x</i>} N High Electron Mobility Transistor Structures. Materials Research Society Symposia Proceedings, 2008, 1111, 1.	0.1	1
139	Strain in 3C–SiC Heteroepitaxial Layers Grown on (100) and (111) Oriented Silicon Substrates. Materials Science Forum, 2008, 600-603, 207-210.	0.3	5
140	Growth of AlGaN/GaN HEMTs on 3C-SiC/Si(111) Substrates. Materials Research Society Symposia Proceedings, 2008, 1068, 1.	0.1	0
141	Investigation of AlGaNâ^•AlNâ^•GaN heterostructures for magnetic sensor application from liquid helium temperature to 300°C. Applied Physics Letters, 2008, 92, .	3.3	16
142	Performance of Unstuck ¿ Gate AlGaN/GaN HEMTs on (001) Silicon Substrate at 10 GHz. , 2008, , .		1
143	Magnetotransport in Gd-implanted wurtzite GaNâ^•AlxGa1â^'xN high electron mobility transistor structures. Applied Physics Letters, 2008, 92, 112111.	3.3	10
144	Thickness and substrate effects on AlN thin film growth at room temperature. EPJ Applied Physics, 2008, 43, 309-313.	0.7	34

#	Article	IF	CITATIONS
145	AlGaN/GaN HEMTs on (001) oriented silicon substrate based on 100nm SiN recessed gate technology for low cost device fabrication. , 2007, , .		0
146	Development and analysis of low resistance ohmic contact to n-AlGaN/GaN HEMT. Diamond and Related Materials, 2007, 16, 262-266.	3.9	29
147	In situ measurements of wafer bending curvature during growth of group-III-nitride layers on silicon by molecular beam epitaxy. Journal of Crystal Growth, 2007, 301-302, 71-74.	1.5	18
148	Developments for the production of high-quality and high-uniformity AlGaN/GaN heterostructures by ammonia MBE. Journal of Crystal Growth, 2007, 301-302, 434-436.	1.5	21
149	AlGaN/GaN HEMTs regrown by MBE on epi-ready semi-insulating GaN-on-sapphire with inhibited interface contamination. Journal of Crystal Growth, 2007, 309, 1-7.	1.5	32
150	Realization of AlGaN/GaN HEMTs on Si-on-polySiC substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2670-2673.	0.8	1
151	AlGaN/GaN HEMTs on a (001)-Oriented Silicon Substrate Based on 100-nm SiN Recessed Gate Technology for Microwave Power Amplification. IEEE Transactions on Electron Devices, 2007, 54, 2843-2848.	3.0	13
152	Influence of crystal quality on electron mobility in AlGaN/GaN HEMTs grown on Si(111), SiC and GaN templates. European Physical Journal Special Topics, 2006, 132, 365-368.	0.2	5
153	Quality and uniformity assessment of AlGaN/GaN quantum wells and HEMT heterostructures grown by molecular beam epitaxy with ammonia source. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2325-2328.	0.8	16
154	Growth by molecular beam epitaxy of AlGaN/GaN high electron mobility transistors on Si-on-polySiC. Superlattices and Microstructures, 2006, 40, 359-362.	3.1	3
155	AlGaN/GaN HEMTs grown on silicon (001) substrates by molecular beam epitaxy. Superlattices and Microstructures, 2006, 40, 295-299.	3.1	15
156	High temperature pulsed measurements of AlGaN/GaN HEMTs on high resistive Si(111) substrate. Microwave and Optical Technology Letters, 2006, 48, 2303-2305.	1.4	2
157	AlGaNâ^•GaN HEMTs on (001) silicon substrates. Electronics Letters, 2006, 42, 117.	1.0	10
158	Structural and electrical properties of AlGaN/GaN HEMTs grown by MBE on SiC, Si(111) and GaN templates. Journal of Crystal Growth, 2005, 278, 383-386.	1.5	18
159	AlGaN/GaN/AlGaN DH-HEMTs grown by MBE on Si(111). Journal of Crystal Growth, 2005, 278, 393-396.	1.5	23
160	Hexagonal c-axis GaN layers grown by metalorganic vapor-phase epitaxy on Si(001). Journal of Crystal Growth, 2005, 280, 44-53.	1.5	21
161	High temperature electrical investigations of (Al,Ga)N/GaN heterostructures - Hall sensor applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1438-1443.	0.8	14
162	Layer quality and 2DEG behavior in AlGaN/GaN HEMTs grown by Molecular Beam Epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2195-2198.	0.8	1

#	Article	IF	CITATIONS
163	Electron mobility and transfer characteristics in AlGaN/GaN HEMTs. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2720-2723.	0.8	13
164	Growth of wurtzite-GaN on silicon (100) substrate by molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2187-2190.	0.8	13
165	High-electron-mobility AlGaNâ^•GaN heterostructures grown on Si(001) by molecular-beam epitaxy. Applied Physics Letters, 2005, 87, 133505.	3.3	27
166	Temperature measurement in AlGaN/GaN High-Electron-Mobility Transistors using micro-Raman scattering spectroscopy. EPJ Applied Physics, 2005, 30, 77-82.	0.7	10
167	Electronic properties of deep defects in n-type GaN. Superlattices and Microstructures, 2004, 36, 435-443.	3.1	10
168	Temperature measurement by micro-Raman scattering spectroscopy in the active zone of AlGaN/GaN high-electron-mobility transistors. EPJ Applied Physics, 2004, 27, 293-296.	0.7	7
169	High Microwave and Noise Performance of 0.17- <tex>\$muhbox m\$</tex> AlGaN–GaN HEMTs on High-Resistivity Silicon Substrates. IEEE Electron Device Letters, 2004, 25, 167-169.	3.9	38
170	Low-frequency noise behavior in GaN HEMTs on silicon substrate. , 2004, , .		2
171	MBE growth of ALGaN/GaN HEMTS on resistive Si(111) substrate with RF small signal and power performances. Journal of Crystal Growth, 2003, 251, 811-815.	1.5	29
172	Influence of MBE growth conditions on the quality of InAlAs/InGaAs metamorphic HEMTs on GaAs. Journal of Crystal Growth, 2003, 251, 822-826.	1.5	18
173	Interplay between relaxation, surface morphology and composition modulation in InAlAs graded buffer layers. Journal of Crystal Growth, 2003, 251, 112-117.	1.5	26
174	High pressure study of the electrical transport phenomena in AlGaN/GaN heterostructures. Physica Status Solidi (B): Basic Research, 2003, 235, 232-237.	1.5	7
175	AlGaN/GaN HEMTs on Resistive Si(111) Substrate: From Material Assessment to RF Power Performances. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 61-64.	0.8	1
176	Thermal characterisation of AlGaN/GaN HEMTs grown on silicon and sapphire substrates based on pulsed I-V measurements. EPJ Applied Physics, 2003, 22, 77-82.	0.7	10
177	Power results at 4 GHz of AlGaN/GaN HEMTs on high resistive silicon [111] substrate. IEEE Microwave and Wireless Components Letters, 2003, 13, 99-101.	3.2	7
178	Indium content measurements in metamorphic high electron mobility transistor structures by combination of x-ray reciprocal space mapping and transmission electron microscopy. Journal of Applied Physics, 2003, 93, 4219-4225.	2.5	53
179	60-GHz high power performance In/sub 0.35/Al/sub 0.65/As-In/sub 0-35/Ga/sub 0.65/As metamorphic HEMTs on GaAs. IEEE Electron Device Letters, 2003, 24, 724-726.	3.9	15
180	AlGaNâ^•GaN HEMTs on Si(111) with 6.6â€Wâ^•mm output power density. Electronics Letters, 2003, 39, 626.	1.0	59

#	Article	IF	CITATIONS
181	fmax of 490â€GHz metamorphic In0.52Al0.48Asâ^•In0.53Ga0.47As HEMTs on GaAs substrate. Electronics Letters, 2002, 38, 389.	1.0	15
182	High-power AlGaNâ^•GaN HEMTs on resistive silicon substrate. Electronics Letters, 2002, 38, 750.	1.0	11
183	AlGaNâ^•GaN HEMTs on resistive Si(111) substrate grown by gas-source MBE. Electronics Letters, 2002, 38, 91.	1.0	18
184	Stacking of metamorphic InAlAs/InGaAs heterostructures on GaAs substrate. Journal of Applied Physics, 2001, 90, 5774-5777.	2.5	8
185	Effects of mismatch strain and alloy composition on the formation of InAs islands on InAlAs templates. Journal of Electronic Materials, 2001, 30, 453-458.	2.2	0
186	Hemt's capability for millimeter wave applications. Annales Des Telecommunications/Annals of Telecommunications, 2001, 56, 15-26.	2.5	5
187	Molecular Beam Epitaxy of Group-III Nitrides on Silicon Substrates: Growth, Properties and Device Applications. Physica Status Solidi A, 2001, 188, 501-510.	1.7	142
188	Comparison of InAs islands self-assembled on pseudomorphic and metamorphic InAlAs buffer layers grown on GaAs substrate. Journal of Crystal Growth, 2001, 227-228, 1016-1019.	1.5	1
189	Enhancement-mode Al/sub 0.66/In/sub 0.34/As/Ga/sub 0.67/In/sub 0.33/As metamorphic HEMT, modeling and measurements. IEEE Transactions on Electron Devices, 2001, 48, 1037-1044.	3.0	24
190	0.1-μm high performance double heterojunction In0.32Al0.68As/In0.33Ga0.67As metamorphic HEMTs on GaAs. Solid-State Electronics, 2000, 44, 1685-1688.	1.4	9
191	The indium content in metamorphic As/As HEMTs on GaAs substrate: a new structure parameter. Solid-State Electronics, 2000, 44, 1021-1027.	1.4	30
192	Surface morphology and strain relaxation of InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps. Applied Surface Science, 2000, 166, 442-445.	6.1	20
193	Comparison of In[sub 0.33]Al[sub 0.67]As/In[sub 0.34]Ga[sub 0.66]As on GaAs metamorphic high electron mobility transistors grown by molecular beam epitaxy with normal and inverse step on linear graded buffer layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B. Microelectronics Processing and Phenomena, 2000, 18, 2513.	1.6	15
194	Enhancement mode metamorphic Al/sub 0.67/In/sub 0.33/As/Ga/sub 0.66/In/sub 0.34/As HEMT on GaAs substrate with high breakdown voltage. IEEE Electron Device Letters, 2000, 21, 512-514.	3.9	12
195	0.1 [micro sign]m high performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMT on GaAs using inverse step InAlAs buffer. Electronics Letters, 1999, 35, 1670.	1.0	8
196	InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps. Journal of Crystal Growth, 1999, 201-202, 263-266.	1.5	30
197	Kinetics of AsCl3 chemical beam etching of GaAs(001), (111)A and (111)B surfaces. Journal of Crystal Growth, 1999, 201-202, 614-618.	1.5	1
198	Metamorphic In/sub 0.4/Al/sub 0.6/As/In/sub 0.4/Ga/sub 0.6/As HEMTs on GaAs substrate. IEEE Electron Device Letters, 1999, 20, 123-125.	3.9	43

#	Article	IF	CITATIONS
199	InAlAs/InGaAs Metamorphic High Electron Mobility Transistors on GaAs Substrate: Influence of Indium Content on Material Properties and Device Performance. Japanese Journal of Applied Physics, 1999, 38, 1164-1168.	1.5	32
200	Influence on power performances at 60 GHz of indium composition in metamorphic HEMTs. Electronics Letters, 1999, 35, 1489.	1.0	3
201	MBE grown InAlAs/InGaAs lattice mismatched layers for HEMT application on GaAs substrate. Applied Surface Science, 1998, 123-124, 734-737.	6.1	24
202	InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage. IEEE Electron Device Letters, 1998, 19, 345-347.	3.9	85
203	Selective area etching of heterostructures using AsCl3. Journal of Crystal Growth, 1997, 170, 674-678.	1.5	3
204	Temperature dependence of GaAs chemical etching using AsCl3. Journal of Crystal Growth, 1996, 164, 97-103.	1.5	10
205	In-Situ Cleaning ofSiO2-Patterned GaAs Surface with Trisdimethylaminoarsine for Selective Regrowth. Japanese Journal of Applied Physics, 1996, 35, 5964-5968.	1.5	5
206	High-PerformanceIn0.3Ga0.7As/In0.29Al0.71As/GaAsMetamorphic High-Electron-Mobility Transistor. Japanese Journal of Applied Physics, 1994, 33, 3343-3347.	1.5	1
207	Capture time versus barrier thickness in quantumâ€well structures measured by infrared photoconductive gain. Applied Physics Letters, 1993, 63, 3312-3314.	3.3	30
208	Microwave performance of 0.4 μm gate metamorphic In0.29Al0.71As/In0.3Ga0.7As HEMT on GaAs substrate. Electronics Letters, 1993, 29, 169.	1.0	25
209	Metamorphic In0.3Ga0.7As/In0.29Al0.71As layer on GaAs: A new structure for high performance high electron mobility transistor realization. Applied Physics Letters, 1992, 61, 922-924.	3.3	33
210	Metamorphic HEMT on GaAs: MBE growth and device performance. Microelectronic Engineering, 1992, 19, 317-320.	2.4	1
211	Modelling of pseudomorphic AlGaAs/GaInAs/AlGaAs layers using selfconsistent approach. European Transactions on Telecommunications, 1990, 1, 429-432.	1.2	8
212	Interplays between plastic relaxation, surface morphology and composition modulation in InAlAs graded buffer layers under various growth conditions. , 0, , .		1
213	MBE growth of high quality AlGaN/GaN HEMTs on resistive Si[111] substrate with RF small signal and power performances. , 0, , .		2
214	Influence of growth conditions on the structural, optical and electrical quality of MBE grown InAlAs/InGaAs metamorphic HEMTs on GaAs. , 0, , .		1
215	Blue (Ga,In)N/GaN Light Emitting Diodes on Si(110) Substrate. Applied Physics Express, 0, 1, 121101.	2.4	21
216	Role of Substrate Misorientation in Relaxation of 3C-SiC Layers on Silicon. Materials Science Forum, 0, 615-617, 169-172.	0.3	8

#	Article	IF	CITATIONS
217	2DEG HEMT Mobility vs Inversion Channel MOSFET Mobility. Materials Science Forum, 0, 645-648, 1207-1210.	0.3	3
218	Ohmic Contact Resistance to GaN Devices Dependence with on Temperature for GaN Devices T. Materials Science Forum, 0, 679-680, 816-819.	0.3	3
219	Structural and Electrical Properties of Graphene Films Grown by Propane/Hydrogen CVD on 6H-SiC(0001). Materials Science Forum, 0, 717-720, 625-628.	0.3	3
220	CVD Growth of Graphene on 2'' 3C-SiC/Si Templates: Influence of Substrate Orientation and Wafer Homogeneity. Materials Science Forum, 0, 717-720, 621-624.	0.3	1
221	Comparison of Electrical Behavior of GaN-Based MOS Structures Obtained by Different PECVD Process. Materials Science Forum, 0, 711, 228-232.	0.3	0
222	Polarization Engineering of Al(Ga)N/GaN HEMT Structures for Microwave High Power Applications. Materials Science Forum, 0, 806, 81-87.	0.3	0
223	CVD Growth of Graphene on SiC (0001): Influence of Substrate Offcut. Materials Science Forum, 0, 897, 731-734.	0.3	4
224	AlGaN/GaN High Electron Mobility Transistors Grown by MOVPE on 3C-SiC/Si(111) for RF Applications. Materials Science Forum, 0, 1062, 482-486.	0.3	0