
Dale L Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/896244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Templated synthesis enhances the cobalt adsorption capacity of a porous organic polymer. Nanoscale, 2022, 14, 299-304.	5.6	3
2	A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5, 231-237.	34.4	133
3	Unravelling Magnetic Nanochain Formation in Dispersion for In Vivo Applications. Advanced Materials, 2021, 33, e2008683.	21.0	11
4	Luminescence thermometry for detection of optical cooling from colloidal quantum dots embedded in dielectric waveguides. , 2021, , .		0
5	Design and Evaluation of Nano-Composite Core Inductors for Efficiency Improvement in High- Frequency Power Converters. , 2020, , .		0
6	In-situ Electron Microscopy to Inform Superior Magnetic Nanocomposites. Microscopy and Microanalysis, 2020, 26, 2554-2555.	0.4	0
7	Facettierte verzweigte Nickelâ€Nanopartikel mit variierbarer Verzweigungsläge für die hochaktive elektrokatalytische Oxidation von Biomasse. Angewandte Chemie, 2020, 132, 15615-15620.	2.0	18
8	ADMET polymerization in affordable, commercially available, high boiling solvents. SN Applied Sciences, 2020, 2, 1.	2.9	4
9	Magnetic Tunability in RE-DOBDC MOFs via NO _{<i>x</i>} Acid Gas Adsorption. ACS Applied Materials & Interfaces, 2020, 12, 19504-19510.	8.0	39
10	Faceted Branched Nickel Nanoparticles with Tunable Branch Length for Highâ€Activity Electrocatalytic Oxidation of Biomass. Angewandte Chemie - International Edition, 2020, 59, 15487-15491.	13.8	83
11	Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 2020, 18, 35.	9.1	109
12	Anti-Stokes photoluminescence and optical cooling of CdSeS/ZnS colloidal quantum dots embedded in dielectric waveguides. , 2020, , .		0
13	Synthesis and characterization of near-infrared PbSe/SnS colloidal core-shell quantum dots. , 2020, , .		0
14	Synthesis and characterization of colloidal CdSexS1-x/ZnS quantum dots. , 2020, , .		0
15	Formation of Branched Ruthenium Nanoparticles for Improved Electrocatalysis of Oxygen Evolution Reaction. Small, 2019, 15, e1804577.	10.0	54
16	Perspective: altering structure in a hierarchically assembled magnetic nanocomposite to rapidly tune optical reflection. Journal of Materials Science, 2019, 54, 8059-8062.	3.7	0
17	Soft matter and nanomaterials characterization by cryogenic transmission electron microscopy. MRS Bulletin, 2019, 44, 942-948.	3.5	15
18	Controlling anisotropy in stereolithographically printed polymers. Journal of Materials Science, 2019, 54, 2763-2765.	3.7	2

#	Article	IF	CITATIONS
19	Synthesis and characterization of colloidal ZnTe/ZnS quantum dots. , 2019, , .		2
20	Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size. Angewandte Chemie - International Edition, 2018, 57, 7678-7681.	13.8	17
21	Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size. Angewandte Chemie, 2018, 130, 7804-7807.	2.0	5
22	Formation of Metal Nanoparticles Directly from Bulk Sources Using Ultrasound and Application to Eâ€Waste Upcycling. Small, 2018, 14, 1703615.	10.0	7
23	Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures. ACS Omega, 2018, 3, 503-508.	3.5	6
24	Self-Assembled Layering of Magnetic Nanoparticles in a Ferrofluid on Silicon Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 5050-5060.	8.0	22
25	Phase-sensitive small-angle neutron scattering experiment. Journal of Physics Communications, 2018, 2, 095018.	1.2	1
26	Soft magnetic materials for a sustainable and electrified world. Science, 2018, 362, .	12.6	501
27	Finite element modeling of nanoscale-enabled microinductors for power electronics. Journal of Materials Research, 2018, 33, 2223-2233.	2.6	4
28	Gram scale synthesis of Fe/FexOy core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites. Journal of Materials Research, 2018, 33, 2156-2167.	2.6	10
29	Titelbild: Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size (Angew. Chem. 26/2018). Angewandte Chemie, 2018, 130, 7657-7657.	2.0	0
30	Detection and measurement of HER2+ breast cancer cells using tumor-targeted iron oxide nanoparticles and magnetic relaxometry Journal of Clinical Oncology, 2018, 36, e13019-e13019.	1.6	1
31	Effects of iron-oxide nanoparticles on compound biofilms of streptococcus gordonii and fusobacterium nucleatum. , 2018, , .		0
32	Synthesis and characterization of colloidal ZnTe nanocrystals and ZnTe/ZnSe quantum dots. , 2018, , .		0
33	Magnetically Recoverable Pd/Fe ₃ O ₄ Core–Shell Nanowire Clusters with Increased Hydrogenation Activity. ChemPlusChem, 2017, 82, 347-351.	2.8	7
34	Generation-After-Next Power Electronics: Ultrawide-bandgap devices, high-temperature packaging, and magnetic nanocomposite materials. IEEE Power Electronics Magazine, 2017, 4, 36-42.	0.7	36
35	Effects of iron-oxide nanoparticles and magnetic fields on oral biofilms. Proceedings of SPIE, 2017, , .	0.8	1
36	Non-volatile iron carbonyls as versatile precursors for the synthesis of iron-containing nanoparticles. Nanoscale, 2017, 9, 6632-6637.	5.6	26

#	Article	IF	CITATIONS
37	Abstract P4-01-08: Specific detection of anti-Her2 PEGylated PrecisionMRX® nanoparticles measured using superparamagnetic relaxometry. , 2017, , .		0
38	Abstract 2859: Sensitive, specific detection of Her-2 positive tumors in mice using superparamagnetic relaxometry (SPMR). , 2017, , .		0
39	Sub-Millisecond Response Time in a Photorefractive Composite Operating under CW Conditions. Scientific Reports, 2016, 6, 30810.	3.3	11
40	Phase Behavior of Ternary Polymer Brushes. ACS Macro Letters, 2016, 5, 149-153.	4.8	14
41	Abstract 4239: Monitoringin vivobiodistribution of superparamagnetic nanoparticles using superparamagnetic relaxometry (SPMR). , 2016, , .		Ο
42	Greater than the sum: Synergy and emergent properties in nanoparticle–polymer composites. MRS Bulletin, 2015, 40, 760-767.	3.5	26
43	Magnetic relaxometry as applied to sensitive cancer detection and localization. Biomedizinische Technik, 2015, 60, 445-55.	0.8	26
44	Off-Resonance Photosensitization of a Photorefractive Polymer Composite Using PbS Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 13827-13835.	3.1	15
45	Switchable electrolyte properties and redox chemistry in aqueous media based on temperature-responsive polymers. Journal of Applied Electrochemistry, 2015, 45, 921-930.	2.9	6
46	Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms. Journal of Colloid and Interface Science, 2015, 459, 175-182.	9.4	13
47	Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism. Chemistry of Materials, 2015, 27, 6059-6066.	6.7	195
48	Assay for lignin breakdown based on lignin films: insights into the Fenton reaction with insoluble lignin. Green Chemistry, 2015, 17, 4830-4845.	9.0	10
49	Effect of Seed Age on Gold Nanorod Formation: A Microfluidic, Real-Time Investigation. Chemistry of Materials, 2015, 27, 6442-6449.	6.7	34
50	Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy. , 2014, , .		0
51	Poly(<i>N</i> -isopropylacrylamide) Surfactant-Functionalized Responsive Silver Nanoparticles and Superlattices. ACS Nano, 2014, 8, 4799-4804.	14.6	44
52	Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications. Proceedings of SPIE, 2013, , .	0.8	1
53	Controlled polymer monolayer synthesis by radical transfer to surface immobilized transfer agents. Polymer Chemistry, 2013, 4, 1565-1574.	3.9	3
54	Self-assembly in a mixed polymer brush with inhomogeneous grafting density composition. Soft Matter, 2013, 9, 5341.	2.7	16

#	Article	IF	CITATIONS
55	Large enhancements of magnetic anisotropy in oxide-free iron nanoparticles. Journal of Magnetism and Magnetic Materials, 2013, 331, 156-161.	2.3	22
56	Implication of Ligand Choice on Surface Properties, Crystal Structure, and Magnetic Properties of Iron Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 258-265.	2.3	6
57	Nanoscale Patterning of Membrane-Bound Proteins Formed through Curvature-Induced Partitioning of Phase-Specific Receptor Lipids. Langmuir, 2013, 29, 6109-6115.	3.5	13
58	A simple low-cost synthesis of brookite TiO2 nanoparticles. Journal of Materials Research, 2013, 28, 348-353.	2.6	7
59	Development of Antibody-Tagged Nanoparticles for Detection of Transplant Rejection Using Biomagnetic Sensors. Cell Transplantation, 2013, 22, 1943-1954.	2.5	12
60	Multifunctional superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung. , 2012, , .		0
61	Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium. Journal of the Electrochemical Society, 2012, 159, A688-A695.	2.9	43
62	Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis. , 2012, , .		1
63	Structural and magnetic characterization of superparamagnetic iron platinum nanoparticle contrast agents for magnetic resonance imaging. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 02C101.	1.2	20
64	Exploring Lateral Microphase Separation in Mixed Polymer Brushes by Experiment and Self-Consistent Field Theory Simulations. Macromolecules, 2012, 45, 510-524.	4.8	38
65	Thermally Programmable pH Buffers. ACS Applied Materials & amp; Interfaces, 2012, 4, 6247-6251.	8.0	7
66	Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications. Nanomaterials, 2012, 2, 134-146.	4.1	39
67	Imaging of Her2â€targeted magnetic nanoparticles for breast cancer detection: comparison of SQUIDâ€detected magnetic relaxometry and MRI. Contrast Media and Molecular Imaging, 2012, 7, 308-319.	0.8	80
68	Interactions of Endoglucanases with Amorphous Cellulose Films Resolved by Neutron Reflectometry and Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir, 2012, 28, 8348-8358.	3.5	29
69	Reversible Control of Electrochemical Properties Using Thermallyâ€Responsive Polymer Electrolytes. Advanced Materials, 2012, 24, 886-889.	21.0	54
70	Nanostructured Lithium-Aluminum Alloy Electrodes for Lithium-Ion Batteries. ECS Transactions, 2011, 33, 1-13.	0.5	19
71	Self-consistent field simulations of self- and directed-assembly in a mixed polymer brush. Soft Matter, 2011, 7, 8776.	2.7	28
72	In Situ Transmission Electron Microscopy Observation of Pulverization of Aluminum Nanowires and Evolution of the Thin Surface Al ₂ O ₃ Layers during Lithiation–Delithiation Cycles. Nano Letters, 2011, 11, 4188-4194.	9.1	263

#	Article	IF	CITATIONS
73	Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Research, 2011, 13, R108.	5.0	117
74	Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging. Journal of Nanoparticle Research, 2011, 13, 4717-4729.	1.9	51
75	Magnetic properties of nanoparticles useful for SQUID relaxometry in biomedical applications. Journal of Magnetism and Magnetic Materials, 2011, 323, 767-774.	2.3	17
76	Field-based simulations of directed self-assembly in a mixed brush system. , 2010, , .		1
77	Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry. Physics in Medicine and Biology, 2010, 55, 5985-6003.	3.0	53
78	Characterization of magnetite nanoparticles for SQUID-relaxometry and magnetic needle biopsy. Journal of Magnetism and Magnetic Materials, 2009, 321, 1459-1464.	2.3	39
79	Effects of Water and Temperature on Conformational Order in Model Nylon Thin Films. Journal of Physical Chemistry C, 2009, 113, 13723-13731.	3.1	20
80	Synthesis and Characterization of Titaniaâ^'Graphene Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 19812-19823.	3.1	372
81	Giant magnetic susceptibility enhancement in field-structured nanocomposites. Journal of Magnetism and Magnetic Materials, 2008, 320, 2221-2227.	2.3	12
82	Iron Nanoparticles. , 2008, , 1681-1687.		2
83	Switching Surface Chemistry with Supramolecular Machines. Langmuir, 2007, 23, 31-34.	3.5	38
84	Synthesis, Properties, and Applications of Iron Nanoparticles. ChemInform, 2005, 36, no.	0.0	2
85	Synthesis, Properties, and Applications of Iron Nanoparticles. Small, 2005, 1, 482-501.	10.0	1,245
86	Characterization of Polymer Brushes on Nanoparticle Surfaces. , 2005, , 213-230.		0
87	Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a β-diketone surfactant. Journal of Magnetism and Magnetic Materials, 2004, 278, 311-316.	2.3	41
88	Templateless Assembly of Molecularly Aligned Conductive Polymer Nanowires: A New Approach for Oriented Nanostructures. Chemistry - A European Journal, 2003, 9, 604-611.	3.3	207
89	Conformation of End-Tethered PNIPAM Chains in Water and in Acetone by Neutron Reflectivity. Macromolecules, 2003, 36, 5244-5251.	4.8	103
90	Programmed Adsorption and Release of Proteins in a Microfluidic Device. Science, 2003, 301, 352-354.	12.6	518

#	Article	IF	CITATIONS
91	Incorporation of bioactive materials into integrated systems. , 2003, 5220, 28.		3
92	The Formation of Polymer Monolayers: From Adsorption to Surface Initiated Polymerizations. , 1997, , 107-122.		5