Srinivas Madduri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8962403/publications.pdf Version: 2024-02-01

SPININAS MADDURI

#	Article	IF	CITATIONS
1	Synergy of human platelet lysate and laminin to enhance the neurotrophic effect of human adipose-derived stem cells. Neural Regeneration Research, 2022, 17, 2200.	1.6	2
2	Editorial: Emerging Therapeutic Approaches for Repair and Regeneration of Injuries in the Peripheral Nervous System. Frontiers in Bioengineering and Biotechnology, 2022, 10, 891459.	2.0	0
3	Comparative hard x-ray tomography for virtual histology of zebrafish larva, human tooth cementum, and porcine nerve. Journal of Medical Imaging, 2022, 9, 031507.	0.8	7
4	Clinical Studies and Pre-clinical Animal Models on Facial Nerve Preservation, Reconstruction, and Regeneration Following Cerebellopontine Angle Tumor Surgery–A Systematic Review and Future Perspectives. Frontiers in Bioengineering and Biotechnology, 2021, 9, 659413.	2.0	5
5	Laboratory-based phase and absorption tomography for micro-imaging of annual layers in human tooth cementum, paraffin-embedded nerve and zebrafish embryo. , 2021, , .		1
6	A new model of chronic peripheral nerve compression for basic research and pharmaceutical drug testing. Regenerative Medicine, 2021, 16, 931-947.	0.8	3
7	Increasing Fat Graft Retention in Irradiated Tissue after Preconditioning with External Volume Expansion. Plastic and Reconstructive Surgery, 2021, 147, 158e-159e.	0.7	2
8	Systematic investigation and comparison of US FDA-approved immunosuppressive drugs FK506, cyclosporine and rapamycin for neuromuscular regeneration following chronic nerve compression injury. Regenerative Medicine, 2021, 16, 989-1003.	0.8	2
9	Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells, 2020, 9, 1990.	1.8	37
10	Modulation of Human Adipose Stem Cells' Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro. Cells, 2020, 9, 1939.	1.8	10
11	Ex-Vivo Stimulation of Adipose Stem Cells by Growth Factors and Fibrin-Hydrogel Assisted Delivery Strategies for Treating Nerve Gap-Injuries. Bioengineering, 2020, 7, 42.	1.6	11
12	Fat Grafting into Younger Recipients Improves Volume Retention in an Animal Model. Plastic and Reconstructive Surgery, 2020, 145, 657e-658e.	0.7	1
13	Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications. Regenerative Medicine, 2020, 15, 1399-1408.	0.8	13
14	Fibrosis and Regulation of Nerve Regeneration in the Peripheral and Central Nervous Systems. CNS and Neurological Disorders - Drug Targets, 2020, 19, 560-571.	0.8	5
15	Isogenic-induced endothelial cells enhance osteogenic differentiation of mesenchymal stem cells on silk fibroin scaffold. Regenerative Medicine, 2019, 14, 647-661.	0.8	13
16	Macroporous hydrogels derived from aqueous dynamic phase separation. Biomaterials, 2019, 200, 56-65.	5.7	49
17	Three-dimensional Assessment of the Breast: Validation of a Novel, Simple and Inexpensive Scanning Process. In Vivo, 2019, 33, 839-842.	0.6	14
18	The Preparation of the Recipient Site in Fat Grafting: A Comprehensive Review of the Preclinical Evidence. Plastic and Reconstructive Surgery, 2019, 143, 1099-1107.	0.7	41

Srinivas Madduri

#	Article	IF	CITATIONS
19	Denervation leads to volume regression in breast cancer. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2018, 71, 833-839.	0.5	30
20	Adipose Derived Stem Cells Reduce Fibrosis and Promote Nerve Regeneration in Rats. Anatomical Record, 2018, 301, 1714-1721.	0.8	29
21	The Impact of Recipient Site External Expansion in Fat Grafting Surgical Outcomes. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1649.	0.3	28
22	Split-sciatic nerve surgery: A new microsurgical model in experimental nerve repair. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2018, 71, 557-565.	0.5	3
23	Three-dimensional imaging and analysis of entire peripheral nerves after repair and reconstruction. Journal of Neuroscience Methods, 2018, 295, 37-44.	1.3	11
24	Three-dimensional and non-destructive characterization of nerves inside conduits using laboratory-based micro computed tomography. Journal of Neuroscience Methods, 2018, 294, 59-66.	1.3	10
25	Nerve Repair With Fibrin Nerve Conduit and Modified Suture Placement. Anatomical Record, 2018, 301, 1690-1696.	0.8	26
26	Regeneration of nerve crush injury using adiposeâ€derived stem cells: A multimodal comparison. Muscle and Nerve, 2018, 58, 566-572.	1.0	8
27	Patient Height, Weight, BMI and Age as Predictors of Gracilis Muscle Free-Flap Mass in Lower Extremity Reconstruction. In Vivo, 2018, 32, 591-595.	0.6	2
28	Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 2116-2124.	2.1	42
29	Engineering functional bladder tissues. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 515-522.	1.3	62
30	Nerve conduit scaffolds for discrete delivery of two neurotrophic factors. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 139-142.	2.0	39
31	A bilayered hybrid microfibrous PLGA–Acellular matrix scaffold for hollow organ tissue engineering. Biomaterials, 2013, 34, 1537-1545.	5.7	84
32	1261 SCAFFOLD WITH NEUROTROPHIC AND TOPOGRAPHIC FACTORS FOR IMPROVED AUTONOMIC INNERVATION FOR BLADDER ENGINEERING. Journal of Urology, 2013, 189, .	0.2	0
33	Growth factor delivery systems and repair strategies for damaged peripheral nerves. Journal of Controlled Release, 2012, 161, 274-282.	4.8	91
34	166 OPTIMAL LEVEL OF SMOOTH-MUSCLE-CELL-DIFFERENTIATION OF FAT DERIVED STEM CELLS FOR TISSUE ENGINEERING. Journal of Urology, 2011, 185, .	0.2	0
35	Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve regeneration in rats. Biomaterials, 2010, 31, 8402-8409.	5.7	81
36	Collagen nerve conduits releasing the neurotrophic factors GDNF and NGF. Journal of Controlled Release, 2010, 143, 168-174.	4.8	107

#	Article	IF	CITATIONS
37	Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. Journal of the Peripheral Nervous System, 2010, 15, 93-103.	1.4	141
38	Scaffold Characteristics for Functional Hollow Organ Regeneration. Materials, 2010, 3, 241-263.	1.3	11
39	Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neuroscience Research, 2009, 65, 88-97.	1.0	115
40	Scaffolds for the Engineering of Functional Bladder Tissues. , 0, , .		1