Shi-Hai Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8962095/publications.pdf

Version: 2024-02-01

		304743	302126
52	1,586 citations	22	39
papers	citations	h-index	g-index
5 0	F.2	5 0	740
53	53	53	749
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Review of Security Evaluation of Practical Quantum Key Distribution System. Entropy, 2022, 24, 260.	2.2	23
2	Beyond universal attack detection for continuous-variable quantum key distribution via deep learning. Physical Review A, 2022, 105, .	2.5	10
3	Security of quantum key distribution with source and detection imperfections. New Journal of Physics, 2021, 23, 023011.	2.9	12
4	Chip-based quantum key distribution. AAPPS Bulletin, 2021, 31, 1.	6.1	132
5	Security of reference-frame-independent quantum key distribution with source flaws. Physical Review A, 2021, 104, .	2.5	5
6	Deterministic secure quantum communication with practical devices. Quantum Engineering, 2021, 3, e86.	2.5	5
7	Chip-Based Measurement-Device-Independent Quantum Key Distribution Using Integrated Silicon Photonic Systems. Physical Review Applied, 2020, 14, .	3.8	32
8	Security evaluation of quantum key distribution with weak basis-choice flaws. Scientific Reports, 2020, 10, 18145.	3.3	5
9	Hacking single-photon avalanche detectors in quantum key distribution via pulse illumination. Optics Express, 2020, 28, 25574.	3.4	11
10	Field demonstration of time-bin reference-frame-independent quantum key distribution via an intracity free-space link. Optics Letters, 2020, 45, 3022.	3.3	18
11	Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network*. Chinese Physics Letters, 2019, 36, 070301.	3.3	12
12	Robust holography of the temporal wave function via second-order interference. Physical Review A, 2019, 100, .	2.5	3
13	Reference-Frame-Independent Quantum Key Distribution Using Fewer States. Physical Review Applied, 2019, 12, .	3.8	24
14	Experimental study of four-state reference-frame-independent quantum key distribution with source flaws. Physical Review A, 2019, 99, .	2.5	20
15	Laser-seeding Attack in Quantum Key Distribution. Physical Review Applied, 2019, 12, .	3.8	56
16	Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging. Optics Express, 2018, 26, 99.	3.4	29
17	Quantum key distribution with distinguishable decoy states. Physical Review A, 2018, 98, .	2.5	49
18	Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optica, 2018, 5, 902.	9.3	43

#	Article	IF	Citations
19	Room temperature continuous frequency tuning InGaAs/InP single-photon detector. AIP Advances, 2018, 8, 075106.	1.3	5
20	Experimental study of a quantum random-number generator based on two independent lasers. Physical Review A, 2017, 96, .	2.5	12
21	Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors. Chinese Physics Letters, 2016, 33, 120301.	3.3	12
22	Insecurity of Detector-Device-Independent Quantum Key Distribution. Physical Review Letters, 2016, 117, 250505.	7.8	46
23	Experimental demonstration of passive-decoy-state quantum key distribution with two independent lasers. Physical Review A, 2016, 94, .	2.5	13
24	Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Physical Review A, 2016, 94, .	2.5	22
25	Measurement-device-independent entanglement-based quantum key distribution. Physical Review A, 2016, 93, .	2.5	22
26	Trojan horse attacks on counterfactual quantum key distribution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1589-1592.	2.1	16
27	Effect of source tampering in the security of quantum cryptography. Physical Review A, 2015, 92, .	2.5	53
28	Experimental quantum key distribution with source flaws. Physical Review A, 2015, 92, .	2.5	69
29	Reference-frame-independent quantum key distribution with source flaws. Physical Review A, 2015, 92, .	2.5	33
30	Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Physical Review A, 2014, 89, .	2.5	83
31	Measurement-device-independent quantum key distribution with a passive decoy-state method. Physical Review A, 2014, 90, .	2.5	16
32	Frequency shift attack on â€~plug-and-play' quantum key distribution systems. Journal of Modern Optics, 2014, 61, 147-153.	1.3	6
33	Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices. Frontiers of Physics, 2014, 9, 613-628.	5.0	11
34	Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator. Physical Review A, 2014, 89, .	2.5	26
35	Hacking on decoy-state quantum key distribution system with partial phase randomization. Scientific Reports, 2014, 4, 4759.	3.3	37
36	Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Physical Review A, 2013, 88, .	2.5	160

#	Article	IF	CITATIONS
37	Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems. Physical Review A, 2013, 88, .	2.5	28
38	Logic-qubit controlled-NOT gate of decoherence-free subspace with nonlinear quantum optics. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1872.	2.1	15
39	Optimal symmetric quantum cloning machine with nonlinear optics. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 123.	2.1	6
40	Qphone. , 2013, , .		4
41	Quantum Random Number Generation Based on Quantum Phase Noise. Chinese Physics Letters, 2013, 30, 114207.	3.3	4
42	Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Physical Review A, 2013, 87, .	2.5	122
43	Practical decoy-state measurement-device-independent quantum key distribution. Physical Review A, 2013, 87, .	2.5	56
44	Experimental demonstration of an active phase randomization and monitor module for quantum key distribution. Applied Physics Letters, 2012, 101, 071107.	3.3	23
45	Partially random phase attack to the practical two-way quantum-key-distribution system. Physical Review A, 2012, 85, .	2.5	45
46	Single-photon-detection attack on the phase-coding continuous-variable quantum cryptography. Physical Review A, 2012, 86, .	2.5	3
47	Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states. Physical Review A, 2012, 86, .	2.5	25
48	Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system. Physical Review A, 2011, 83, .	2.5	71
49	Proof-of-principle experiment of a modified photon-number-splitting attack against quantum key distribution. Physical Review A, 2011, 83, .	2.5	16
50	A Three-Node QKD Network Based on a Two-Way QKD System. Chinese Physics Letters, 2011, 28, 040303.	3.3	2
51	Quantum key distribution based on phase encoding in long-distance communication fiber. Optics Letters, 2010, 35, 1203.	3.3	22
52	Decoy state quantum key distribution with finite resources. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2533-2536.	2.1	11