
Michael

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8962059/publications.pdf Version: 2024-02-01

MICHAEL

#	Article	IF	CITATIONS
1	Pharmacological inhibition of adipose tissue adipose triglyceride lipase by Atglistatin prevents catecholamine-induced myocardial damage. Cardiovascular Research, 2022, 118, 2488-2505.	1.8	20
2	Wt1 haploinsufficiency induces browning of epididymal fat and alleviates metabolic dysfunction in mice on high-fat diet. Diabetologia, 2022, 65, 528-540.	2.9	3
3	Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients, 2022, 14, 1236.	1.7	17
4	Complementary omics strategies to dissect p53 signaling networks under nutrient stress. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	4
5	KIAA1363—A Multifunctional Enzyme in Xenobiotic Detoxification and Lipid Ester Hydrolysis. Metabolites, 2022, 12, 516.	1.3	2
6	Intrauterine Exposure to Diabetic Milieu Does Not Induce Diabetes and Obesity in Male Adulthood in a Novel Rat Model. Hypertension, 2021, 77, 202-215.	1.3	4
7	Biological Functions of RBP4 and Its Relevance for Human Diseases. Frontiers in Physiology, 2021, 12, 659977.	1.3	70
8	Insulin Directly Regulates the Circadian Clock in Adipose Tissue. Diabetes, 2021, 70, 1985-1999.	0.3	12
9	Diabetic pregnancy as a novel risk factor for cardiac dysfunction in the offspring—the heart as a target for fetal programming in rats. Diabetologia, 2021, 64, 2829-2842.	2.9	6
10	Retinol Saturase: More than the Name Suggests. Trends in Pharmacological Sciences, 2020, 41, 418-427.	4.0	13
11	The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation. Journal of Biological Chemistry, 2020, 295, 17158-17168.	1.6	7
12	Selective Mineralocorticoid Receptor Cofactor Modulation as Molecular Basis for Finerenone's Antifibrotic Activity. Hypertension, 2018, 71, 599-608.	1.3	149
13	Loss of the Hematopoietic Stem Cell Factor GATA2 in the Osteogenic Lineage Impairs Trabecularization and Mechanical Strength of Bone. Molecular and Cellular Biology, 2018, 38, .	1.1	14
14	p53 Functions in Adipose Tissue Metabolism and Homeostasis. International Journal of Molecular Sciences, 2018, 19, 2622.	1.8	68
15	Liver-secreted RBP4 does not impair glucose homeostasis in mice. Journal of Biological Chemistry, 2018, 293, 15269-15276.	1.6	36
16	p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. International Journal of Molecular Sciences, 2018, 19, 921.	1.8	47
17	Retinol saturase coordinates liver metabolism by regulating ChREBP activity. Nature Communications, 2017, 8, 384.	5.8	34
18	Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB Journal, 2017, 31, 732-742.	0.2	55

Michael

#	Article	IF	CITATIONS
19	Reciprocal regulation of carbon monoxide metabolism and the circadian clock. Nature Structural and Molecular Biology, 2017, 24, 15-22.	3.6	49
20	Loss of BMP receptor type 1A in murine adipose tissue attenuates age-related onset of insulin resistance. Diabetologia, 2016, 59, 1769-1777.	2.9	16
21	FABP4-Cre Mediated Expression of Constitutively Active ChREBP Protects Against Obesity, Fatty Liver, and Insulin Resistance. Endocrinology, 2015, 156, 4020-4032.	1.4	37
22	The Glucose Sensor ChREBP Links De Novo Lipogenesis to PPARÎ ³ Activity and Adipocyte Differentiation. Endocrinology, 2015, 156, 4008-4019.	1.4	51
23	Retinol binding protein 4 and its membrane receptors: a metabolic perspective. Hormone Molecular Biology and Clinical Investigation, 2015, 22, 27-37.	0.3	12
24	The Mammalian INDY Homolog Is Induced by CREB in a Rat Model of Type 2 Diabetes. Diabetes, 2014, 63, 1048-1057.	0.3	38
25	Retinol-Binding Protein 4 and Its Membrane Receptor STRA6 Control Adipogenesis by Regulating Cellular Retinoid Homeostasis and Retinoic Acid Receptor α Activity. Molecular and Cellular Biology, 2013, 33, 4068-4082.	1.1	77
26	Metabolite and transcriptome analysis during fasting suggest a role for the p53-Ddit4 axis in major metabolic tissues. BMC Genomics, 2013, 14, 758.	1.2	65
27	GTPase ARFRP1 Is Essential for Normal Hepatic Glycogen Storage and Insulin-Like Growth Factor 1 Secretion. Molecular and Cellular Biology, 2012, 32, 4363-4374.	1.1	24
28	Histone Deacetylase 6 (<i>HDAC6</i>) Is an Essential Modifier of Glucocorticoid-Induced Hepatic Gluconeogenesis. Diabetes, 2012, 61, 513-523.	0.3	78
29	Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16271-16276.	3.3	38
30	Propagation of adipogenic signals through an epigenomic transition state. Genes and Development, 2010, 24, 1035-1044.	2.7	215
31	Liver-Specific Overexpression of Pancreatic-Derived Factor (PANDER) Induces Fasting Hyperglycemia in Mice. Endocrinology, 2010, 151, 5174-5184.	1.4	28
32	Endogenous Ligands for Nuclear Receptors: Digging Deeper. Journal of Biological Chemistry, 2010, 285, 40409-40415.	1.6	142
33	Fingered for a Fat Fate. Cell Metabolism, 2010, 11, 244-245.	7.2	6
34	Endoplasmic Reticulum Stress Regulates Adipocyte Resistin Expression. Diabetes, 2009, 58, 1879-1886.	0.3	45
35	Adipocyte-specific Expression of Murine Resistin Is Mediated by Synergism between Peroxisome Proliferator-activated Receptor I³ and CCAAT/Enhancer-binding Proteins. Journal of Biological Chemistry, 2009, 284, 6116-6125.	1.6	70
36	Retinol saturase promotes adipogenesis and is downregulated in obesity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1105-1110.	3.3	80

Michael

#	Article	IF	CITATIONS
37	Re-expression of GATA2 Cooperates with Peroxisome Proliferator-activated Receptor-Î ³ Depletion to Revert the Adipocyte Phenotype. Journal of Biological Chemistry, 2009, 284, 9458-9464.	1.6	60
38	DOT1L/KMT4 Recruitment and H3K79 Methylation Are Ubiquitously Coupled with Gene Transcription in Mammalian Cells. Molecular and Cellular Biology, 2008, 28, 2825-2839.	1.1	441
39	Stereospecificity of Retinol Saturase:  Absolute Configuration, Synthesis, and Biological Evaluation of Dihydroretinoids. Journal of the American Chemical Society, 2008, 130, 1154-1155.	6.6	36
40	Parvin-β Inhibits Breast Cancer Tumorigenicity and Promotes CDK9-Mediated Peroxisome Proliferator-Activated Receptor Gamma 1 Phosphorylation. Molecular and Cellular Biology, 2008, 28, 687-704.	1.1	41
41	PPARÎ ³ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes and Development, 2008, 22, 2941-2952.	2.7	690
42	Liver-Specific Peroxisome Proliferator–Activated Receptor α Target Gene Regulation by the Angiotensin Type 1 Receptor Blocker Telmisartan. Diabetes, 2008, 57, 1405-1413.	0.3	74
43	A Widely Used Retinoic Acid Receptor Antagonist Induces Peroxisome Proliferator-Activated Receptor-γ Activity. Molecular Pharmacology, 2007, 71, 1251-1257.	1.0	39
44	Activation of retinoic acid receptorâ€Î± favours regulatory T cell induction at the expense of ILâ€17â€secreting T helper cell differentiation. European Journal of Immunology, 2007, 37, 2396-2399.	1.6	187
45	Cardiac PPARα expression in patients with dilated cardiomyopathy. European Journal of Heart Failure, 2006, 8, 290-294.	2.9	28
46	Regulation of Peroxisome Proliferator–Activated Receptor γ Activity by Losartan Metabolites. Hypertension, 2006, 47, 586-589.	1.3	86
47	Molecular Characterization of New Selective Peroxisome Proliferator-Activated Receptor Â Modulators With Angiotensin Receptor Blocking Activity. Diabetes, 2005, 54, 3442-3452.	0.3	270
48	PPARÎ ³ -Activating Angiotensin Type-1 Receptor Blockers Induce Adiponectin. Hypertension, 2005, 46, 137-143.	1.3	257
49	Angiotensin Type 1 Receptor Blockers Induce Peroxisome Proliferator–Activated Receptor-γ Activity. Circulation, 2004, 109, 2054-2057.	1.6	696
50	p53 Regulates a miRNA-Fructose Transporter Axis in Brown Adipose Tissue Under Fasting. Frontiers in Genetics, 0, 13, .	1.1	2