JarosÅ, aw Serafin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8961939/publications.pdf

Version: 2024-02-01

687363 610901 24 872 13 citations h-index papers

g-index 24 24 24 534 docs citations times ranked citing authors all docs

24

#	Article	IF	CITATIONS
1	The new tailored nanoporous carbons from the common polypody (Polypodium vulgare): The role of textural properties for enhanced CO2 adsorption. Chemical Engineering Journal, 2022, 429, 131751.	12.7	45
2	Photocatalytic hydrogen production from alcohol aqueous solutions over TiO2-activated carbon composites decorated with Au and Pt. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113726.	3.9	15
3	Management of surgical mask waste to activated carbons for CO2 capture. Journal of CO2 Utilization, 2022, 59, 101970.	6.8	59
4	Promising activated carbons derived from common oak leaves and their application in CO2 storage. Journal of Environmental Chemical Engineering, 2022, 10, 107642.	6.7	31
5	Activated carbons from the Amazonian biomass andiroba shells applied as a CO2 adsorbent and a cheap semiconductor material. Journal of CO2 Utilization, 2022, 62, 102071.	6.8	22
6	Preparation of low-cost activated carbons from amazonian nutshells for CO2 storage. Biomass and Bioenergy, 2021, 144, 105925.	5.7	60
7	Computer Analysis of the Effect of Activation Temperature on the Microporous Structure Development of Activated Carbon Derived from Common Polypody. Materials, 2021, 14, 2951.	2.9	14
8	Adsorption And Thermodynamic Parameters Of Activated Carbon-Diazepam Systems In Simulated Gastric Fluid. Advanced Materials Letters, 2021, 12, 21061637-21061637.	0.6	1
9	Hydrogen photoproduction on TiO2-reduced graphene oxide hybrid materials from water-ethanol mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113406.	3.9	8
10	Single step preparation of activated biocarbons derived from pomegranate peels and their CO2 adsorption performance. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105338.	5 . 5	26
11	Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Management, 2021, 136, 273-282.	7.4	55
12	Physical and chemical properties of activated carbon synthesized from plant wastes and shungite for CO2 capture. Journal of Environmental Chemical Engineering, 2021, 9, 106798.	6.7	43
13	Activated Carbon Modification towards Efficient Catalyst for High Value-Added Products Synthesis from Alpha-Pinene. Materials, 2021, 14, 7811.	2.9	10
14	FeCl3-Modified Carbonaceous Catalysts from Orange Peel for Solvent-Free Alpha-Pinene Oxidation. Materials, 2021, 14, 7729.	2.9	3
15	Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Letters, 2020, 30, 189-198.	5.9	11
16	A straightforward method to prepare supported Au clusters by mechanochemistry and its application in photocatalysis. Applied Materials Today, 2020, 21, 100873.	4.3	7
17	Macroporous silicon coated with M/TiO2 (M=Au,Pt) as a highly efficient photoreactor for hydrogen production. Chemical Engineering Journal, 2020, 393, 124701.	12.7	12
18	Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Applied Surface Science, 2019, 497, 143722.	6.1	130

#	Article	IF	CITATIONS
19	Preparation and characterisation of carbon spheres for carbon dioxide capture. Journal of Porous Materials, 2019, 26, 19-27.	2.6	19
20	Microporous carbon spheres modified with EDA used as carbon dioxide sorbents. Advanced Materials Letters, 2018, 9, 432-435.	0.6	4
21	Preparation of Activated Carbon from the Biodegradable film for Co ₂ Capture Applications. Polish Journal of Chemical Technology, 2018, 20, 75-80.	0.5	5
22	Highly microporous activated carbons from biomass for CO 2 capture and effective micropores at different conditions. Journal of CO2 Utilization, 2017, 18, 73-79.	6.8	265
23	Utilization of spent dregs for the production of activated carbon for CO ₂ adsorption. Polish Journal of Chemical Technology, 2017, 19, 44-50.	0.5	11
24	Adsorption of carbon dioxide on TEPA-modified TiO ₂ /titanate composite nanorods. New Journal of Chemistry, 2017, 41, 7870-7885.	2.8	16