Guangxu Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8961701/publications.pdf Version: 2024-02-01

<u> <u>Chancyli</u> Yan</u>

#	Article	lF	CITATIONS
1	Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions. Environmental Science & Technology, 2011, 45, 9003-9008.	10.0	466
2	Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere, 2018, 190, 296-306.	8.2	204
3	Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere, 2017, 189, 86-93.	8.2	75
4	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	4.3	74
5	Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere, 2016, 150, 17-23.	8.2	70
6	Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochemical Engineering Journal, 2016, 112, 170-177.	3.6	54
7	Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil Surface Pathway above a Plume of Dissolved Ethanol. Environmental Science & Technology, 2012, 46, 6013-6019.	10.0	50
8	Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, Acinetobacter sp. YS2. Bioresource Technology, 2020, 302, 122799.	9.6	49
9	Vapor Intrusion Investigations and Decision-Making: A Critical Review. Environmental Science & Technology, 2020, 54, 7050-7069.	10.0	47
10	Assessment of Bacterial and Archaeal Community Structure in Swine Wastewater Treatment Processes. Microbial Ecology, 2015, 70, 77-87.	2.8	39
11	Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosphere, 2018, 205, 41-44.	8.2	36
12	Aerobic denitrifiers with petroleum metabolizing ability isolated from caprolactam sewage treatment pool. Bioresource Technology, 2019, 290, 121719.	9.6	34
13	Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend Releases. Environmental Science & Technology, 2014, 48, 474-481.	10.0	29
14	Characteristics and mechanisms of controlled-release KMnO4 for groundwater remediation: Experimental and modeling investigations. Water Research, 2020, 171, 115385.	11.3	27
15	Percarbonate persistence under different water chemistry conditions. Chemical Engineering Journal, 2020, 389, 123422.	12.7	26
16	Microbial processes influencing the transport, fate and groundwater impacts of fuel ethanol releases. Current Opinion in Biotechnology, 2013, 24, 457-466.	6.6	24
17	Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts. Water Science and Technology, 2018, 2017, 340-350.	2.5	23
18	Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume. Water Research, 2015, 80, 119-129.	11.3	20

Guangxu Yan

#	Article	IF	CITATIONS
19	Applicability of Soil Concentration for VOC-Contaminated Site Assessments Explored Using Field Data from the Beijing-Tianjin-Hebei Urban Agglomeration. Environmental Science & Technology, 2019, 53, 789-797.	10.0	19
20	Vapor intrusion risk of fuel ether oxygenates methyl tert -butyl ether (MTBE), tert -amyl methyl ether (TAME) and ethyl tert -butyl ether (ETBE): A modeling study. Journal of Hazardous Materials, 2017, 332, 10-18.	12.4	17
21	Degradation of benzotriazole by sulfate radical-based advanced oxidation process. Environmental Technology (United Kingdom), 2021, 42, 238-247.	2.2	17
22	Isolation and Characterization of Oil-Degrading Microorganisms for Bench-Scale Evaluations of Autochthonous Bioaugmentation for Soil Remediation. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	16
23	Adaptive microbial population shifts in response to a continuous ethanol blend release increases biodegradation potential. Environmental Pollution, 2013, 178, 419-425.	7.5	14
24	Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model. Journal of Hazardous Materials, 2016, 304, 522-531.	12.4	14
25	Combinations of Surfactant Flushing and Bioremediation for Removing Fuel Hydrocarbons from Contaminated Soils. Clean - Soil, Air, Water, 2016, 44, 984-991.	1.1	13
26	Bioremediation Enhances the Pollutant Removal Efficiency of Soil Vapor Extraction (SVE) in Treating Petroleum Drilling Waste. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	11
27	Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle. Environmental Pollution, 2015, 198, 154-160.	7.5	10
28	A source depletion model for vapor intrusion involving the influence of building characteristics. Environmental Pollution, 2019, 246, 864-872.	7.5	7
29	Flux Chamber Measurements Should Play a More Important Role in Contaminated Site Management. Environmental Science & Technology, 2020, 54, 11645-11647.	10.0	7
30	Biodegradability evaluation of pollutants in acrylonitrile wastewaters based on particle size distribution. Desalination and Water Treatment, 2015, 53, 2792-2798.	1.0	6
31	Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA). Environmental Pollution, 2016, 213, 825-832.	7.5	6
32	Characterization of Dietzia cercidiphylli C-1 isolated from extra-heavy oil contaminated soil. RSC Advances, 2017, 7, 19486-19491.	3.6	6
33	Vapor Intrusion Management in China: Lessons Learned from the United States. Environmental Science & Technology, 2018, 52, 3338-3339.	10.0	6
34	Degradation of benzothiazole pollutant by sulfate radical-based advanced oxidation process. Environmental Technology (United Kingdom), 2022, 43, 2834-2843.	2.2	5
35	Comparisons of Four Methods for Measuring Total Petroleum Hydrocarbons and Short-term Weathering Effect in Soils Contaminated by Crude Oil and Fuel Oils. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	5
36	Sulphate radical oxidation of benzophenone: kinetics, mechanisms and influence of water matrix anions. Environmental Technology (United Kingdom), 2020, 42, 1-9.	2.2	2

#	Article	IF	CITATIONS
37	Response to the comments on â€~ã€~Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature'' by Ma, J., Li, H., Chi, L., Chen, H., & Chen, C. [Chemosphere 189 (2017) 86–93]. Chemosphere, 2018, 194, 403-404.	8.2	0