
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8961616/publications.pdf Version: 2024-02-01

ΔΝΝΑ Ι ΑΤΙΑΝΟ

#	Article	IF	CITATIONS
1	Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491, 119-124.	27.8	4,038
2	Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genetics, 2010, 42, 1118-1125.	21.4	2,284
3	Genomewide Association Study of Severe Covid-19 with Respiratory Failure. New England Journal of Medicine, 2020, 383, 1522-1534.	27.0	1,548
4	Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genetics, 2011, 43, 246-252.	21.4	1,201
5	Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nature Genetics, 2011, 43, 1066-1073.	21.4	698
6	Mapping the human genetic architecture of COVID-19. Nature, 2021, 600, 472-477.	27.8	640
7	Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nature Genetics, 2010, 42, 332-337.	21.4	572
8	Common variants at five new loci associated with early-onset inflammatory bowel disease. Nature Genetics, 2009, 41, 1335-1340.	21.4	459
9	Ulcerative colitis–risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nature Genetics, 2009, 41, 216-220.	21.4	364
10	Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nature Medicine, 2015, 21, 1018-1027.	30.7	212
11	IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nature Communications, 2018, 9, 2427.	12.8	159
12	Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies. Gastroenterology, 2013, 145, 339-347.	1.3	149
13	Variants of CARD15 are Associated with an Aggressive Clinical Course of Crohn's Disease-An IG-IBD Study. American Journal of Gastroenterology, 2005, 100, 84-92.	0.4	116
14	Glycosylation of Immunoglobulin G Associates With Clinical Features of Inflammatory Bowel Diseases. Gastroenterology, 2018, 154, 1320-1333.e10.	1.3	116
15	Helicobacter pylori infection and growth delay in older children. Archives of Disease in Childhood, 1997, 77, 46-49.	1.9	115
16	Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia. Nature Genetics, 2014, 46, 901-904.	21.4	104
17	DMBT1 Confers Mucosal Protection In Vivo and a Deletion Variant Is Associated With Crohn's Disease. Gastroenterology, 2007, 133, 1499-1509.	1.3	96
18	Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nature Genetics, 2021, 53, 1543-1552.	21.4	96

#	Article	IF	CITATIONS
19	Genetic Variation in Myosin IXB Is Associated With Ulcerative Colitis. Gastroenterology, 2006, 131, 1768-1774.	1.3	95
20	Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn's disease. Alimentary Pharmacology and Therapeutics, 2006, 23, 1455-1461.	3.7	84
21	Polymorphism of the IRGM Gene Might Predispose to Fistulizing Behavior in Crohn's Disease. American Journal of Gastroenterology, 2009, 104, 110-116.	0.4	82
22	Genetic analysis in Italian families with inflammatory bowel disease supports linkage to the IBD1 locus – A GISC study. European Journal of Human Genetics, 1999, 7, 567-573.	2.8	81
23	Plasma N-Glycan Signatures Are Associated With Features ofÂInflammatory Bowel Diseases. Gastroenterology, 2018, 155, 829-843.	1.3	80
24	Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunology, 2008, 1, 131-138.	6.0	77
25	Polymorphisms of Tumor Necrosis Factorâ€Î± but Not <i>MDR1</i> Influence Response to Medical Therapy in Pediatricâ€Onset Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2007, 44, 171-179.	1.8	76
26	Associations between Genetic Polymorphisms in IL-33, IL1R1 and Risk for Inflammatory Bowel Disease. PLoS ONE, 2013, 8, e62144.	2.5	75
27	Erythrocytes-Mediated Delivery of Dexamethasone in Steroid-Dependent IBD Patients-A Pilot Uncontrolled Study. American Journal of Gastroenterology, 2005, 100, 1370-1375.	0.4	71
28	Association of DLG5 R30Q variant with inflammatory bowel disease. European Journal of Human Genetics, 2005, 13, 835-839.	2.8	70
29	Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites. Oncotarget, 2016, 7, 5815-5829.	1.8	68
30	Erythrocyte-Mediated Delivery of Dexamethasone in Patients With Mild-to-Moderate Ulcerative Colitis, Refractory to Mesalamine: A Randomized, Controlled Study. American Journal of Gastroenterology, 2008, 103, 2509-2516.	0.4	66
31	Replication of interleukin 23 receptor and autophagyrelated 16-like 1 association in adult- and pediatric-onset inflammatory bowel disease in Italy. World Journal of Gastroenterology, 2008, 14, 4643.	3.3	66
32	Evidence of transmission ratio distortion of DLG5 R30Q variant in general and implication of an association with Crohn disease in men. Human Genetics, 2006, 119, 305-311.	3.8	61
33	Multidrug resistance 1 gene polymorphisms are not associated with inflammatory bowel disease and response to therapy in Italian patients. Alimentary Pharmacology and Therapeutics, 2005, 22, 1129-1138.	3.7	60
34	Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nature Communications, 2015, 6, 8442.	12.8	58
35	Variants of OCTN1–2 cation transporter genes are associated with both Crohn's disease and ulcerative colitis. Alimentary Pharmacology and Therapeutics, 2006, 23, 497-506.	3.7	57
36	Female-Specific Association Between Variants on Chromosome 9 and Self-Reported Diagnosis of Irritable Bowel Syndrome. Gastroenterology, 2018, 155, 168-179.	1.3	55

#	Article	IF	CITATIONS
37	Investigation of Multiple Susceptibility Loci for Inflammatory Bowel Disease in an Italian Cohort of Patients. PLoS ONE, 2011, 6, e22688.	2.5	53
38	Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiology International, 2015, 32, 903-916.	2.0	50
39	Gender-stratified analysis of DLG5 R30Q in 4707 patients with Crohn disease and 4973 controls from 12 Caucasian cohorts. Journal of Medical Genetics, 2007, 45, 36-42.	3.2	47
40	Sequential evaluation of thiopurine methyltransferase, inosine triphosphate pyrophosphatase, and HPRT1 genes polymorphisms to explain thiopurines' toxicity and efficacy. Alimentary Pharmacology and Therapeutics, 2007, 26, 737-745.	3.7	41
41	Association Study of a Polymorphism in Clock GenePERIOD3and Risk of Inflammatory Bowel Disease. Chronobiology International, 2012, 29, 994-1003.	2.0	38
42	Evaluating the role of the genetic variations of PTPN22, NFKB1, and FcGRIIIA genes in inflammatory bowel disease: A meta-analysis. Inflammatory Bowel Diseases, 2007, 13, 1212-1219.	1.9	35
43	MAST3: a novel IBD risk factor that modulates TLR4 signaling. Genes and Immunity, 2008, 9, 602-612.	4.1	35
44	HLA and enteric antineuronal antibodies in patients with achalasia. Neurogastroenterology and Motility, 2006, 18, 520-525.	3.0	34
45	Glucocorticoid resistance in Crohn's disease and ulcerative colitis: an association study investigating GR and FKBP5 gene polymorphisms. Pharmacogenomics Journal, 2012, 12, 432-438.	2.0	34
46	Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clinical Epigenetics, 2018, 10, 75.	4.1	32
47	Frequency of NOD2/CARD15 variants in both sporadic and familial cases of Crohn's disease across Italy. An Italian Group for Inflammatory Bowel Disease study. Digestive and Liver Disease, 2004, 36, 121-124.	0.9	31
48	The association of <i>MYO9B</i> gene in Italian patients with inflammatory bowel diseases. Alimentary Pharmacology and Therapeutics, 2008, 27, 241-248.	3.7	31
49	CARD15 Genotyping in Inflammatory Bowel Disease Patients by Multiplex Pyrosequencing. Clinical Chemistry, 2003, 49, 1675-1679.	3.2	30
50	HLA-DRB1 Alleles May Influence Disease Phenotype in Patients With Inflammatory Bowel Disease: A Critical Reappraisal With Review of the Literature. Diseases of the Colon and Rectum, 2005, 48, 57-65.	1.3	30
51	Contribution of IBD5 Locus to Clinical Features of IBD Patients. American Journal of Gastroenterology, 2006, 101, 318-325.	0.4	27
52	The frame-shift mutation of the NOD2/CARD15 gene is significantly increased in ulcerative colitis: An â^—IG-IBD study. Gastroenterology, 2004, 126, 625-627.	1.3	26
53	False-positive results of SARS-CoV-2 IgM/IgG antibody tests in sera stored before the 2020 pandemic in Italy. International Journal of Infectious Diseases, 2021, 104, 159-163.	3.3	26
54	Antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Diseases of the Colon and Rectum, 2000, 43, 999-1007.	1.3	25

#	Article	IF	CITATIONS
55	Genome-Wide Expression Profiling Identifies an Impairment of Negative Feedback Signals in the Crohn's Disease-Associated NOD2 Variant L1007fsinsC. Journal of Immunology, 2011, 186, 4027-4038.	0.8	25
56	Haplotype-based association analysis of 56 functional candidate genes in the IBD6 locus on chromosome 19. European Journal of Human Genetics, 2006, 14, 780-790.	2.8	24
57	The â^'A2518G Polymorphism of Monocyte Chemoattractant Protein-1 Is Associated With Crohn's Disease. American Journal of Gastroenterology, 2010, 105, 1586-1594.	0.4	24
58	High resolution melting (HRM) analysis for the detection of ER22/23EK, Bcll, and N363S polymorphisms of the glucocorticoid receptor gene. Journal of Steroid Biochemistry and Molecular Biology, 2009, 113, 269-274.	2.5	23
59	Neuroimmune interactions in patients with inflammatory bowel diseases: Disease activity and clinical behavior based on Substance P serum levels. Journal of Crohn's and Colitis, 2012, 6, 563-570.	1.3	23
60	Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia. Scientific Reports, 2016, 6, 31549.	3.3	23
61	Variants at the 3p21 locus influence susceptibility and phenotype both in adults and early-onset patients with inflammatory bowel disease. Inflammatory Bowel Diseases, 2010, 16, 1108-1117.	1.9	22
62	Erythrocytes-mediated Delivery of Dexamethasone 21-phosphate in Steroid-dependent Ulcerative Colitis. Inflammatory Bowel Diseases, 2013, 19, 1.	1.9	22
63	Genome-wide Pathway Analysis Using Gene Expression Data of Colonic Mucosa in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 1.	1.9	22
64	Genetic variation in the <i>lymphotoxin-α</i> (<i>LTA</i>)/ <i>tumour necrosis factor-α</i> (<i>TNFα</i>) locus as a risk factor for idiopathic achalasia. Gut, 2014, 63, 1401-1409.	12.1	21
65	The HLA-DQβ1 insertion is a strong achalasia risk factor and displays a geospatial north–south gradient among Europeans. European Journal of Human Genetics, 2016, 24, 1228-1231.	2.8	21
66	Enteropathic spondyloarthropathy: A common genetic background with inflammatory bowel disease?. World Journal of Gastroenterology, 2009, 15, 2456.	3.3	21
67	Genetics of inflammatory bowel disease. Digestive and Liver Disease, 2003, 35, 442-449.	0.9	20
68	Anti-Saccharomyces cerevisiae mannan antibodies in inflammatory bowel disease: comparison of different assays and correlation with clinical features. Alimentary Pharmacology and Therapeutics, 2004, 20, 1143-1152.	3.7	19
69	ldiopathic achalasia is not allelic to alacrima achalasia adrenal insufficiency syndrome at the locus. Digestive and Liver Disease, 2005, 37, 312-315.	0.9	19
70	Combined segregation and linkage analysis of inflammatory bowel disease in the IBD1 region using severity to characterise Crohn's disease and ulcerative colitis. European Journal of Human Genetics, 2000, 8, 846-852.	2.8	18
71	Analysis of Candidate Genes on Chromosomes 5q and 19p in Celiac Disease. Journal of Pediatric Gastroenterology and Nutrition, 2007, 45, 180-186.	1.8	18
72	The expression of leucine-rich repeat gene family members in colorectal cancer. Experimental Biology and Medicine, 2012, 237, 1123-1128.	2.4	18

#	Article	IF	CITATIONS
73	Impact of the COVID-19 outbreak and the serum prevalence of SARS-CoV-2 antibodies in patients with inflammatory bowel disease treated with biologic drugs. Digestive and Liver Disease, 2021, 53, 277-282.	0.9	18
74	Functional Implications of MicroRNAs in Crohn's Disease Revealed by Integrating MicroRNA and Messenger RNA Expression Profiling. International Journal of Molecular Sciences, 2017, 18, 1580.	4.1	17
75	Inflammatory Bowel Disease Meets Systems Biology: A Multi-Omics Challenge and Frontier. OMICS A Journal of Integrative Biology, 2016, 20, 692-698.	2.0	16
76	IL-1β-511 and IL-1RN*2 polymorphisms in inflammatory bowel disease: An Italian population study and meta-analysis of European studies. Digestive and Liver Disease, 2010, 42, 179-184.	0.9	15
77	Do pancreatic cancer and chronic pancreatitis share the same genetic risk factors? A PANcreatic Disease ReseArch (PANDoRA) consortium investigation. International Journal of Cancer, 2018, 142, 290-296.	5.1	14
78	Crohn's Disease Localization Displays Different Predisposing Genetic Variants. PLoS ONE, 2017, 12, e0168821.	2.5	13
79	Erythrocytes as a controlled drug delivery system: Clinical evidences. Journal of Controlled Release, 2006, 116, e43-e45.	9.9	12
80	microRNAâ€mRNA network model in patients with achalasia. Neurogastroenterology and Motility, 2020, 32, e13764.	3.0	11
81	Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Frontiers in Genetics, 2021, 12, 693933.	2.3	10
82	Variation in genes encoding for interferon λâ€3 and λâ€4 in the prediction of <scp>HCV</scp> â€1 treatmentâ€induced viral clearance. Liver International, 2014, 34, 1369-1377.	3.9	9
83	Microbiome Analysis of Mucosal Ileoanal Pouch in Ulcerative Colitis Patients Revealed Impairment of the Pouches Immunometabolites. Cells, 2021, 10, 3243.	4.1	9
84	Impact of genetic polymorphisms on the pathogenesis of idiopathic achalasia: Association with IL33 gene variant. Human Immunology, 2014, 75, 364-369.	2.4	8
85	Association of Crohn's disease and ulcerative colitis with haplotypes of the MLH1 gene in Italian inflammatory bowel disease patients. Journal of Medical Genetics, 2002, 39, 332-334.	3.2	7
86	Dissecting genetic predisposition to inflammatory bowel disease: current progress and prospective application. Expert Review of Clinical Immunology, 2007, 3, 287-298.	3.0	7
87	IL23R, ATG16L1, IRGM, OCTN1, and OCTN2 mRNA expression in inflamed and noninflamed mucosa of IBD patients. Inflammatory Bowel Diseases, 2011, 17, 1832-1833.	1.9	7
88	Regularized Least Squares Classifiers may Predict Crohn's Disease from Profiles of Single Nucleotide Polymorphisms. Annals of Human Genetics, 2007, 71, 537-549.	0.8	6
89	Germline Alterations in Patients With IBD-associated Colorectal Cancer. Inflammatory Bowel Diseases, 2022, 28, 447-454.	1.9	6
90	Linkage of ulcerative colitis to the pericentromeric region of chromosome 16 in Italian inflammatory bowel disease families is independent of the presence of common CARD15 mutations. Journal of Medical Genetics, 2003, 40, 837-841.	3.2	5

#	Article	IF	CITATIONS
91	Discovering genetic variants in Crohn's disease by exploring genomic regions enriched of weak association signals. Digestive and Liver Disease, 2011, 43, 623-631.	0.9	5
92	Genetics and Ulcerative Colitis: What are the Clinical Implications?. Current Drug Targets, 2011, 12, 1383-1389.	2.1	4
93	Genetic variants of membrane metallopeptidase genes in inflammatory bowel diseases. Digestive and Liver Disease, 2013, 45, 1003-1010.	0.9	4
94	Worse impact of second wave COVID-19 pandemic in adults but not in children with inflammatory bowel disease: an Italian single tertiary center experience. European Review for Medical and Pharmacological Sciences, 2021, 25, 2744-2747.	0.7	4
95	Association of genetic profiles to Crohn's disease by linear combinations of single nucleotide polymorphisms. Artificial Intelligence in Medicine, 2009, 46, 131-138.	6.5	3
96	Transcriptome and Gene Fusion Analysis of Synchronous Lesions Reveals lncMRPS31P5 as a Novel Transcript Involved in Colorectal Cancer. International Journal of Molecular Sciences, 2020, 21, 7120.	4.1	3
97	Crohn's Colitis: Development of a multiplex gene expression assay comparing mRNA levels of susceptibility genes. Clinics and Research in Hepatology and Gastroenterology, 2017, 41, 435-444.	1.5	2
98	RS-SNP: a random-set method for genome-wide association studies. BMC Genomics, 2011, 12, 166.	2.8	1
99	Dissecting the mucosal expression of human leucine-rich repeat family genes in inflammatory bowel disease patients. Inflammatory Bowel Diseases, 2011, 17, 1834-1835.	1.9	1
100	Circulating levels of cytokines, chemokines and growth factors in patients with achalasia. Biomedical Reports, 2021, 15, 92.	2.0	1
101	Contribution of HLA complex to the disease phenotype in patients with ulcerative colitis. Gastroenterology, 1998, 114, A920.	1.3	0
102	Mutations of CARD15 gene in Crohn's disease patients are more frequent in ASCA-positive with more aggressive clinical course. An Ig-IBD study. Gastroenterology, 2003, 124, A376.	1.3	0
103	Administration of autologous erythrocytes loaded with dexamethasone 21-phosphate is effective in steroid-dependent IBD. Gastroenterology, 2003, 124, A519.	1.3	0
104	Multiple Genetic Testing to Explain Intolerance to Azathioprine. Inflammatory Bowel Diseases, 2006, 12, S18-S19.	1.9	0
105	TLR4 Asp299Gly Polymorphism and CARD15 Mutations in Italian Patients With IBD. Inflammatory Bowel Diseases, 2006, 12, S17-S18.	1.9	0
106	Genotype/Phenotype Analysis of a Panel of Genes in Pediatric Patients With IBD. Inflammatory Bowel Diseases, 2006, 12, S18.	1.9	0
107	Dissection of the Crohn's Disease Transcriptome of 71 Loci Using Genome-Wide Microarrays. Gastroenterology, 2011, 140, S-272-S-273.	1.3	0
108	Addendum: Palmieri, O. et al. Functional Implications of MicroRNAs in Crohn's Disease Revealed by Integrating MicroRNA and Messenger RNA Expression Profiling. Int. J. Mol. Sci. 2017, 18, 1580. International Journal of Molecular Sciences, 2017, 18, 2113.	4.1	0