Zhe Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/896145/publications.pdf

Version: 2024-02-01

304743 395702 2,808 33 22 33 citations h-index g-index papers 36 36 36 3668 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	N6-Methyladenine DNA Modification in the Human Genome. Molecular Cell, 2018, 71, 306-318.e7.	9.7	439
2	Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology, 2012, 12, 106.	3.6	339
3	N6-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Developmental Cell, 2016, 38, 186-200.	7.0	281
4	DNA N-Adenine Methylation in Arabidopsis thaliana. Developmental Cell, 2018, 45, 406-416.e3.	7. 0	196
5	5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. Molecular Plant, 2017, 10, 1387-1399.	8.3	181
6	Whole-Genome Resequencing of a Worldwide Collection of Rapeseed Accessions Reveals the Genetic Basis of Ecotype Divergence. Molecular Plant, 2019, 12, 30-43.	8.3	175
7	Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant, 2021, 14, 384-394.	8.3	131
8	Genome-Wide Identification and Evolutionary and Expression Analyses of MYB-Related Genes in Land Plants. DNA Research, 2013, 20, 437-448.	3.4	129
9	Epigenetic Modifications of mRNA and DNA in Plants. Molecular Plant, 2020, 13, 14-30.	8.3	124
10	N6-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses. Molecular Plant, 2018, 11, 1492-1508.	8.3	123
11	The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion. Scientific Reports, 2015, 5, 11037.	3.3	121
12	Messenger RNA Modifications in Plants. Trends in Plant Science, 2019, 24, 328-341.	8.8	74
13	Reorganization of the 3D chromatin architecture of rice genomes during heat stress. BMC Biology, 2021, 19, 53.	3.8	44
14	Comparison of <i>Arachis monticola</i> with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut. Advanced Science, 2020, 7, 1901672.	11.2	43
15	Characterization of Multiple C2 Domain and Transmembrane Region Proteins in Arabidopsis. Plant Physiology, 2018, 176, 2119-2132.	4.8	40
16	<i>Mesostigma viride</i> Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta. Advanced Science, 2020, 7, 1901850.	11.2	40
17	Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants. PLoS ONE, 2016, 11, e0165020.	2.5	35
18	Massive expansion of the calpain gene family in unicellular eukaryotes. BMC Evolutionary Biology, 2012, 12, 193.	3.2	34

#	Article	IF	CITATIONS
19	Adenine Methylation: New Epigenetic Marker of DNA and mRNA. Molecular Plant, 2018, 11, 1219-1221.	8.3	34
20	Dot Blot Analysis of N6-methyladenosine RNA Modification Levels. Bio-protocol, 2017, 7, e2095.	0.4	34
21	FIONA1â€Mediated m ⁶ A Modification Regulates the Floral Transition in <i>Arabidopsis</i> Advanced Science, 2022, 9, e2103628.	11.2	34
22	The catalytic domain CysPc of the <scp>DEK</scp> 1 calpain is functionally conserved in land plants. Plant Journal, 2013, 75, 742-754.	5.7	27
23	The N6-adenine methylation in yeast genome profiled by single-molecule technology. Journal of Genetics and Genomics, 2018, 45, 223-225.	3.9	21
24	Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development. Plant and Cell Physiology, 2015, 56, 1855-1866.	3.1	20
25	Allele-defined genome reveals biallelic differentiation during cassava evolution. Molecular Plant, 2021, 14, 851-854.	8.3	20
26	Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity. Genome Biology, 2021, 22, 316.	8.8	15
27	Genome-Wide Identification, Evolutionary, and Expression Analyses of Histone H3 Variants in Plants. BioMed Research International, 2015, 2015, 1-7.	1.9	14
28	Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants. Frontiers in Plant Science, 2015, 6, 1102.	3.6	12
29	TOP1α, UPF1, and TTG2 regulate seed size in a parental dosage–dependent manner. PLoS Biology, 2020, 18, e3000930.	5.6	10
30	DNA N6-adenine methylation in Arabidopsis thaliana. Mechanisms of Development, 2017, 145, S137-S138.	1.7	6
31	Transcriptome-Wide Mapping 5-Methylcytosine by m5C RNA Immunoprecipitation Followed by Deep Sequencing in Plant. Methods in Molecular Biology, 2019, 1933, 389-394.	0.9	5
32	Use of the \hat{I}^2 -Glucuronidase (GUS) Reporter System to Localize Promoter Activities of the Endogenous Plant Calpain DEFECTIVE KERNEL1 (DEK1). Methods in Molecular Biology, 2019, 1915, 103-108.	0.9	1
33	Genetic and Genomic Approaches for Improved and Sustainable Brown Algal Cultivation. , 2022, , 615-633.		1