
Nikolai Engedal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8961225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring Autophagic Cargo Flux with Keima-Based Probes. Methods in Molecular Biology, 2022, 2445, 99-115.	0.9	5
2	Transautophagy: Research and Translation of Autophagy Knowledge 2020. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-3.	4.0	2
3	AXL inhibition improves BRAF-targeted treatment in melanoma. Scientific Reports, 2022, 12, 5076.	3.3	14
4	Abstract 401: Single-cell transcriptome and chromatin sequencing uncover gene expression and gene regulatory patterns associated with enzalutamide resistance. Cancer Research, 2022, 82, 401-401.	0.9	0
5	Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression. Nature Biotechnology, 2022, 40, 1624-1633.	17.5	31
6	From Plant to Patient: Thapsigargin, a Tool for Understanding Natural Product Chemistry, Total Syntheses, Biosynthesis, Taxonomy, ATPases, Cell Death, and Drug Development. Progress in the Chemistry of Organic Natural Products, 2021, 115, 59-114.	1.1	4
7	ALK inhibition activates LC3B-independent, protective autophagy in EML4-ALK positive lung cancer cells. Scientific Reports, 2021, 11, 9011.	3.3	7
8	Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse. Nature Communications, 2021, 12, 5307.	12.8	58
9	Perturbation of Cellular Redox Homeostasis Dictates Divergent Effects of Polybutyl Cyanoacrylate (PBCA) Nanoparticles on Autophagy. Cells, 2021, 10, 3432.	4.1	4
10	ESCRT-mediated phagophore sealing during mitophagy. Autophagy, 2020, 16, 826-841.	9.1	119
11	Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Communication and Signaling, 2020, 18, 12.	6.5	60
12	Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot. Biology, 2020, 9, 59.	2.8	12
13	Structural Variants of poly(alkylcyanoacrylate) Nanoparticles Differentially Affect LC3 and Autophagic Cargo Degradation. Journal of Biomedical Nanotechnology, 2020, 16, 432-445.	1.1	5
14	The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress. Journal of Biological Chemistry, 2019, 294, 8197-8217.	3.4	113
15	Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology, 2019, 13, 761-782.	3.0	23
16	Measurement of Bulk Autophagy by a Cargo Sequestration Assay. Methods in Molecular Biology, 2019, 1880, 307-313.	0.9	2
17	The ER Stress Inducer l-Azetidine-2-Carboxylic Acid Elevates the Levels of Phospho-eIF2α and of LC3-II in a Ca2+-Dependent Manner. Cells, 2018, 7, 239.	4.1	21
18	Nonlinear relationship between ER Ca2+ depletion versus induction of the unfolded protein response, autophagy inhibition, and cell death. Cell Calcium, 2018, 76, 48-61.	2.4	12

Nikolai Engedal

#	Article	IF	CITATIONS
19	The Role of Free Radicals in Autophagy Regulation: Implications for Ageing. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-19.	4.0	49
20	Transautophagy: Research and Translation of Autophagy Knowledge. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-3.	4.0	1
21	Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14, 1435-1455.	9.1	1,341
22	From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	68
23	The Lactate Dehydrogenase Sequestration Assay — A Simple and Reliable Method to Determine Bulk Autophagic Sequestration Activity in Mammalian Cells. Journal of Visualized Experiments, 2018, , .	0.3	11
24	An Image-based Assay for High-throughput Analysis of Cell Proliferation and Cell Death of Adherent Cells. Bio-protocol, 2018, 8, e2835.	0.4	12
25	The Long-lived Protein Degradation Assay: an Efficient Method for Quantitative Determination of the Autophagic Flux of Endogenous Proteins in Adherent Cell Lines. Bio-protocol, 2018, 8, e2836.	0.4	12
26	Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. Journal of Biological Chemistry, 2017, 292, 19656-19673.	3.4	147
27	Rab7b modulates autophagic flux by interacting with Atg4B. EMBO Reports, 2017, 18, 1727-1739.	4.5	27
28	A Novel Role of Listeria monocytogenes Membrane Vesicles in Inhibition of Autophagy and Cell Death. Frontiers in Cellular and Infection Microbiology, 2017, 7, 154.	3.9	45
29	A Simple Cargo Sequestration Assay for Quantitative Measurement of Nonselective Autophagy in Cultured Cells. Methods in Enzymology, 2017, 587, 351-364.	1.0	15
30	Abstract 2324: The role of SERCA pump in cell death and autophagy. , 2017, , .		0
31	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
32	Autophagy of cytoplasmic bulk cargo does not require LC3. Autophagy, 2016, 12, 439-441.	9.1	33
33	Novel steps in the autophagic″ysosomal pathway. FEBS Journal, 2015, 282, 2202-2214.	4.7	14
34	Macroautophagic cargo sequestration assays. Methods, 2015, 75, 25-36.	3.8	24
35	UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene, 2015, 34, 3744-3750.	5.9	80
36	Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Experimental Cell Research, 2015, 333, 21-38.	2.6	61

Nikolai Engedal

#	Article	IF	CITATIONS
37	Endosomal Signaling and Oncogenesis. Methods in Enzymology, 2014, 535, 179-200.	1.0	6
38	Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells. Blood, 2013, 122, 2467-2476.	1.4	101
39	The <scp>ERM</scp> Proteins Ezrin and Moesin Regulate Retrograde Shiga Toxin Transport. Traffic, 2013, 14, 839-852.	2.7	18
40	Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy, 2013, 9, 1475-1490.	9.1	83
41	Toll-like receptor 4 facilitates binding of Shiga toxin to colon carcinoma and primary umbilical vein endothelial cells. FEMS Immunology and Medical Microbiology, 2011, 61, 63-75.	2.7	14
42	Shiga toxin and its use in targeted cancer therapy and imaging. Microbial Biotechnology, 2011, 4, 32-46.	4.2	95
43	Immune Regulator Vitamin A and T Cell Death. Vitamins and Hormones, 2011, 86, 153-178.	1.7	13
44	Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Letters, 2010, 584, 2626-2634.	2.8	108
45	The Intracellular Journey of Shiga Toxins~!2009-05-12~!2009-06-03~!2010-03-09~!. The Open Toxinology Journal, 2010, 3, 3-12.	0.9	11
46	Retinoic acid regulates Fas-induced apoptosis in Jurkat T cells: reversal of mitogen-mediated repression of Fas DISC assembly. Journal of Leukocyte Biology, 2009, 85, 469-480.	3.3	15
47	All- <i>trans</i> Retinoic Acid Stimulates IL-2-Mediated Proliferation of Human T Lymphocytes: Early Induction of Cyclin D3. Journal of Immunology, 2006, 177, 2851-2861.	0.8	48
48	Survival of activated human T lymphocytes is promoted by retinoic acid via induction of IL-2. International Immunology, 2004, 16, 443-453.	4.0	35
49	Combined Action of ERK and NFκB Mediates the Protective Effect of Phorbol Ester on Fas-induced Apoptosis in Jurkat Cells. Journal of Biological Chemistry, 2003, 278, 10934-10941.	3.4	40
50	Retinoic Acid Stimulates the Cell Cycle Machinery in Normal T Cells: Involvement of Retinoic Acid Receptor-Mediated IL-2 Secretion. Journal of Immunology, 2002, 169, 5555-5563.	0.8	91
51	C-Jun N-terminal kinase is required for phorbol ester- and thapsigargin-induced apoptosis in the androgen responsive prostate cancer cell line LNCaP. Oncogene, 2002, 21, 1017-1027.	5.9	55
52	Ceramide-induced cell death in the prostate cancer cell line LNCaP has both necrotic and apoptotic features. Prostate, 2001, 46, 289-297.	2.3	27
53	Efficient DNA-mediated gene transfer into prostate cancer cell line LNCaP. , 2000, 43, 111-117.		12
54	CREB Binding Protein Is a Coactivator for the Androgen Receptor and Mediates Cross-talk with AP-1. Journal of Biological Chemistry, 1998, 273, 31853-31859.	3.4	199