
Guntram A Grassl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8961158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salmonella , the host and disease: a brief review. Immunology and Cell Biology, 2007, 85, 112-118.	2.3	522
2	Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Frontiers in Microbiology, 2014, 5, 391.	3.5	349
3	Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. International Journal of Medical Microbiology, 2016, 306, 343-355.	3.6	196
4	A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent <scp><i>S</i></scp> <i>almonella enterica</i> serovar Infantis strain. Environmental Microbiology, 2014, 16, 977-994.	3.8	172
5	Chronic Enteric Salmonella Infection in Mice Leads to Severe and Persistent Intestinal Fibrosis. Gastroenterology, 2008, 134, 768-780.e2.	1.3	130
6	Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nature Communications, 2015, 6, 6440.	12.8	107
7	Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages. Scientific Reports, 2017, 7, 6484.	3.3	83
8	Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nature Communications, 2020, 11, 2013.	12.8	68
9	Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection. PLoS Pathogens, 2015, 11, e1005008.	4.7	50
10	Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization. PLoS Pathogens, 2019, 15, e1007915.	4.7	49
11	Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor–mediated inflammatory responses. Journal of Experimental Medicine, 2017, 214, 227-244.	8.5	42
12	Selective deletion of MyD88 signaling in Î \pm -SMA positive cells ameliorates experimental intestinal fibrosis via post-transcriptional regulation. Mucosal Immunology, 2020, 13, 665-678.	6.0	32
13	The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts. PLoS Pathogens, 2017, 13, e1006559.	4.7	30
14	Differences in Host Cell Invasion and Salmonella Pathogenicity Island 1 Expression between Salmonella enterica Serovar Paratyphi A and Nontyphoidal <i>S</i> . Typhimurium. Infection and Immunity, 2016, 84, 1150-1165.	2.2	29
15	Multigenerational Influences of the Fut2 Gene on the Dynamics of the Gut Microbiota in Mice. Frontiers in Microbiology, 2017, 8, 991.	3.5	20
16	Schistosome Eggs Impair Protective Th1/Th17 Immune Responses Against Salmonella Infection. Frontiers in Immunology, 2018, 9, 2614.	4.8	20
17	MyD88 signaling promotes both mucosal homeostatic and fibrotic responses during Salmonella-induced colitis. American Journal of Physiology - Renal Physiology, 2012, 303, G311-G323.	3.4	19
18	The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. International Journal of Medical Microbiology, 2021, 311, 151487.	3.6	19

GUNTRAM A GRASSL

#	Article	IF	CITATIONS
19	Surface receptor Toso controls B cell–mediated regulation of T cell immunity. Journal of Clinical Investigation, 2018, 128, 1820-1836.	8.2	18
20	Expression and (Lacking) Internalization of the Cell Surface Receptors of Clostridioides difficile Toxin B. Frontiers in Microbiology, 2018, 9, 1483.	3.5	17
21	Differences in the expression of SPI-1 genes pathogenicity and epidemiology between the emerging Salmonella enterica serovar Infantis and the model Salmonella enterica serovar Typhimurium. Journal of Infectious Diseases, 2019, 220, 1071-1081.	4.0	15
22	Persistent Salmonella enterica Serovar Typhimurium Infection Induces Protease Expression During Intestinal Fibrosis. Inflammatory Bowel Diseases, 2019, 25, 1629-1643.	1.9	14
23	Intestinal organoid-based 2D monolayers mimic physiological and pathophysiological properties of the pig intestine. PLoS ONE, 2021, 16, e0256143.	2.5	13
24	Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Frontiers in Microbiology, 0, 13, .	3.5	13
25	Salmonella enterica serovar Typhimurium ΔmsbB Triggers Exacerbated Inflammation in Nod2 Deficient Mice. PLoS ONE, 2014, 9, e113645.	2.5	12
26	Inflammatory Bowel Disease–associated GP2 Autoantibodies Inhibit Mucosal Immune Response to Adherent-invasive Bacteria. Inflammatory Bowel Diseases, 2020, 26, 1856-1868.	1.9	11
27	Insulin-Producing Intestinal K Cells Protect Nonobese Diabetic Mice From Autoimmune Diabetes. Gastroenterology, 2014, 147, 162-171.e6.	1.3	8
28	The Essential Role of Rac1 Glucosylation in Clostridioides difficile Toxin B-Induced Arrest of G1-S Transition. Frontiers in Microbiology, 2022, 13, 846215.	3.5	3
29	Salmonella enterica Infection of Human and Mouse Colon Organoid-Derived Monolayers. Methods in Molecular Biology, 2022, , 149-163.	0.9	3
30	Ex vivo perfusion of the isolated rat small intestine as a novel model ofSalmonellaenteritis. American Journal of Physiology - Renal Physiology, 2016, 310, G55-G63.	3.4	2
31	Mouse Model to Study Salmonella-Induced Colitis. Methods in Molecular Biology, 2022, , 201-213.	0.9	1