David J Marcinek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/89608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults. JAMA Network Open, 2022, 5, e2144279.	5.9	61
2	A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Research, 2021, 49, 11103-11118.	14.5	20
3	Ice seals as sentinels for algal toxin presence in the Pacific Arctic and subarctic marine ecosystems. Marine Mammal Science, 2021, 37, 1292-1308.	1.8	9
4	Are fat and sugar just as detrimental in old age?. GeroScience, 2021, 43, 1615-1625.	4.6	6
5	Functional recovery from eccentric injury is maintained in sarcopenic mouse muscle. JCSM Rapid Communications, 2021, 4, 222-231.	1.6	4
6	Astaxanthin supplementation enhances metabolic adaptation with aerobic training in the elderly. Physiological Reports, 2021, 9, e14887.	1.7	9
7	In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial. PLoS ONE, 2021, 16, e0253849.	2.5	21
8	High intensity muscle stimulation activates a systemic Nrf2-mediated redox stress response. Free Radical Biology and Medicine, 2021, 172, 82-89.	2.9	10
9	Elamipretide (SS-31) treatment attenuates age-associated post-translational modifications of heart proteins. GeroScience, 2021, 43, 2395-2412.	4.6	17
10	An Analysis of Metabolic Changes in the Retina and Retinal Pigment Epithelium of Aging Mice. , 2021, 62, 20.		5
11	Increased tumour burden alters skeletal muscle properties in the KPC mouse model of pancreatic cancer. JCSM Rapid Communications, 2020, 3, 44-55.	1.6	1
12	SSâ€31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging Cell, 2020, 19, e13213.	6.7	38
13	Mitochondrial protein interaction landscape of SS-31. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15363-15373.	7.1	88
14	Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. ELife, 2020, 9, .	6.0	68
15	Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte. ELife, 2020, 9, .	6.0	54
16	Discovery of a Potential Human Serum Biomarker for Chronic Seafood Toxin Exposure Using an SPR Biosensor. Toxins, 2019, 11, 293.	3.4	11
17	Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice. Free Radical Biology and Medicine, 2019, 134, 268-281.	2.9	101
18	Repeated low level domoic acid exposure increases CA1 VGluT1 levels, but not bouton density, VGluT2 or VGAT levels in the hippocampus of adult mice. Harmful Algae, 2018, 79, 74-86.	4.8	6

DAVID J MARCINEK

#	Article	IF	CITATIONS
19	Building strength, endurance, and mobility using an astaxanthin formulation with functional training in elderly. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 826-833.	7.3	30
20	Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biology, 2018, 17, 367-376.	9.0	68
21	Domoic acid in California sea lion fetal fluids indicates continuous exposure to a neuroteratogen poses risks to mammals. Harmful Algae, 2018, 79, 53-57.	4.8	29
22	Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms. Antioxidants and Redox Signaling, 2017, 26, 966-985.	5.4	33
23	The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney International, 2017, 91, 1126-1145.	5.2	85
24	Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1732-1737.	7.1	165
25	Acute and chronic dietary exposure to domoic acid in recreational harvesters: A survey of shellfish consumption behavior. Environment International, 2017, 101, 70-79.	10.0	44
26	Effect of contaminants of emerging concern on liver mitochondrial function in Chinook salmon. Aquatic Toxicology, 2017, 190, 21-31.	4.0	36
27	Chronic low-level exposure to the common seafood toxin domoic acid causes cognitive deficits in mice. Harmful Algae, 2017, 64, 20-29.	4.8	57
28	Skeletal muscle bioenergetics in aging and heart failure. Heart Failure Reviews, 2017, 22, 167-178.	3.9	14
29	Fatiguing Contractions Induce Acute Redox Signaling in Mouse Muscle. Free Radical Biology and Medicine, 2017, 112, 191-192.	2.9	3
30	Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects. PLoS ONE, 2017, 12, e0181086.	2.5	27
31	Age modifies respiratory complex I and protein homeostasis in a muscle typeâ€specific manner. Aging Cell, 2016, 15, 89-99.	6.7	62
32	NAD ⁺ repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 2016, 8, 361ra139.	12.4	208
33	Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 716-724.	3.8	21
34	Olfactory Transcriptional Analysis of Salmon Exposed to Mixtures of Chlorpyrifos and Malathion Reveal Novel Molecular Pathways of Neurobehavioral Injury. Toxicological Sciences, 2016, 149, 145-157.	3.1	19
35	The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function. Frontiers in Physiology, 2015, 6, 347.	2.8	46
36	Effect of omega-3 fatty acid oxidation products on the cellular and mitochondrial toxicity of BDE 47. Toxicology in Vitro, 2015, 29, 672-680.	2.4	17

DAVID J MARCINEK

#	Article	IF	CITATIONS
37	Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. FASEB Journal, 2015, 29, 3582-3592.	O.5	69
38	Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS. Aquatic Toxicology, 2014, 155, 151-159.	4.0	35
39	Mitochondrial oxidative stress in aging and healthspan. Longevity & Healthspan, 2014, 3, 6.	6.7	354
40	In Vivo Metabolic Spectroscopy Identifies Deficits in Mitochondrial Quality and Capacity in Aging Skeletal Muscle. Clinical Pharmacology and Therapeutics, 2014, 96, 669-671.	4.7	5
41	Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell, 2013, 12, 763-771.	6.7	146
42	Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition. Human Molecular Genetics, 2013, 22, 153-167.	2.9	101
43	Higher Mitochondrial Respiration and Uncoupling with Reduced Electron Transport Chain Content <i>in Vivo</i> in Muscle of Sedentary Versus Active Subjects. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 129-136.	3.6	28
44	Targeting redox biology to reverse mitochondrial dysfunction. Aging, 2013, 5, 588-589.	3.1	13
45	Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle. Mechanisms of Ageing and Development, 2012, 133, 620-628.	4.6	28
46	A Novel Antibody-Based Biomarker for Chronic Algal Toxin Exposure and Sub-Acute Neurotoxicity. PLoS ONE, 2012, 7, e36213.	2.5	35
47	Reversal of Ageâ€Related Mitochondrial Dysfunction In Vivo by Treatment with the Mitochondrially Targeted Therapeutic SS―31. FASEB Journal, 2012, 26, 1144.10.	0.5	0
48	Mitochondrial Oxidative Stress Mediates Angiotensin II–Induced Cardiac Hypertrophy and Gαq Overexpression–Induced Heart Failure. Circulation Research, 2011, 108, 837-846.	4.5	450
49	Reduced Coupling of Oxidative Phosphorylation In Vivo Precedes Electron Transport Chain Defects Due to Mild Oxidative Stress in Mice. PLoS ONE, 2011, 6, e26963.	2.5	39
50	Oxidative Stressâ€Induced Maximal Oxygen Flux and Signaling Response is Muscle Fiberâ€Type Dependent. FASEB Journal, 2011, 25, 1114.6.	0.5	0
51	Lactic acidosis in vivo: testing the link between lactate generation and H ⁺ accumulation in ischemic mouse muscle. Journal of Applied Physiology, 2010, 108, 1479-1486.	2.5	61
52	Ageâ€dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell, 2010, 9, 536-544.	6.7	242
53	Comparative Skeletal Muscle Aging. , 2010, , 287-317.		3
54	Oxidative stress leads to reduced coupling of oxidative phosphorylation in in vivo resting mouse skeletal muscle. FASEB Journal, 2010, 24, 1045.11.	0.5	0

DAVID J MARCINEK

#	Article	IF	CITATIONS
55	Noninvasive In Vivo Small Animal MRI and MRS: Basic Experimental Procedures. Journal of Visualized Experiments, 2009, , .	0.3	5
56	Does Mitochondrial Uncoupling Generate More Mitochondria in Muscle?. FASEB Journal, 2009, 23, 600.30.	0.5	0
57	Aging increases resting oxygen consumption in typeâ€II skeletal muscle. FASEB Journal, 2009, 23, 954.10.	0.5	0
58	Mitochondrial function in vivo: Spectroscopy provides window on cellular energetics. Methods, 2008, 46, 312-318.	3.8	52
59	Mice with Mitochondrial Complex I Deficiency Develop a Fatal Encephalomyopathy. Cell Metabolism, 2008, 7, 312-320.	16.2	357
60	Mild mitochondrial uncoupling impacts cellular aging in human muscles <i>in vivo</i> . Proceedings of the United States of America, 2007, 104, 1057-1062.	7.1	191
61	Mitochondrial Dysfunction. Exercise and Sport Sciences Reviews, 2007, 35, 43-49.	3.0	57
62	Mitochondrial dysfunction and age. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 688-692.	2.5	94
63	Wavelength Shift Analysis: A Simple Method to Determine the Contribution of Hemoglobin and Myoglobin to In Vivo Optical Spectra. Applied Spectroscopy, 2007, 61, 665-669.	2.2	48
64	Mitochondrial function, fibre types and ageing: new insights from human musclein vivo. Experimental Physiology, 2007, 92, 333-339.	2.0	75
65	Reduced mitochondrial efficiency: dysfunction or defence in ageing muscle?. , 2006, , 30-31.		1
66	Reduced mitochondrial couplingin vivoalters cellular energetics in aged mouse skeletal muscle. Journal of Physiology, 2005, 569, 467-473.	2.9	104
67	Mitochondrial Energy Coupling (ATP/O2) In Human Muscle. Medicine and Science in Sports and Exercise, 2005, 37, S455.	0.4	0
68	Mitochondrial dysfunction measured in vivo. Acta Physiologica Scandinavica, 2004, 182, 343-352.	2.2	29
69	Mitochondrial coupling in vivo in mouse skeletal muscle. American Journal of Physiology - Cell Physiology, 2004, 286, C457-C463.	4.6	74
70	Oxygen regulation and limitation to cellular respiration in mouse skeletal muscle in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1900-H1908.	3.2	62
71	Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes. Molecular Biology Reports, 2002, 29, 135-139.	2.3	5
72	Depth and muscle temperature of Pacific bluefin tuna examined with acoustic and pop-up satellite archival tags. Marine Biology, 2001, 138, 869-885.	1.5	84

#	Article	IF	CITATIONS
73	Movements and Temperature Preferences of Atlantic Bluefin Tuna (Thunnus thynnus) off North Carolina: A Comparison of Acoustic, Archival and Pop-Up Satellite Tags. Reviews: Methods and Technologies in Fish Biology and Fisheries, 2001, , 89-108.	0.6	14