
Yasa Sampurno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8960352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Communication—An Analysis of Shear Forces in Post-CMP PVA Brush Scrubbing for Stationary and Rotating Wafers. ECS Journal of Solid State Science and Technology, 2021, 10, 034002.	1.8	3
2	Understanding the Reasons Behind Defect Levels in Post-Copper-CMP Cleaning Processes with Different Chemistries and PVA Brushes. ECS Journal of Solid State Science and Technology, 2021, 10, 064011.	1.8	1
3	Effect of conditioner disc wear on frictional, thermal, kinetic and pad micro-textural attributes of interlayer dielectric and tungsten chemical mechanical planarization. Japanese Journal of Applied Physics, 2020, 59, SLLA02.	1.5	0
4	Determining instantaneous removal rates in metal chemical mechanical planarization. Japanese Journal of Applied Physics, 2020, 59, SL0803.	1.5	1
5	Effect of Various CVD-Coated Conditioning Disc Designs and Polisher Kinematics on Fluid Flow Characteristics during CMP. ECS Journal of Solid State Science and Technology, 2020, 9, 024005.	1.8	1
6	Correlating Shear Force and Coefficient of Friction to Platen Motor Current in Copper, Cobalt, and Shallow Trench Isolation Chemical Mechanical Planarization at Steady-State Conditions. ECS Journal of Solid State Science and Technology, 2020, 9, 024012.	1.8	0
7	Tribological, Thermal, Kinetic, and Pad Micro-Textural Studies Using Polyphenylene Sulfide Retaining Rings in Interlayer Dielectric Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2020, 9, 124002.	1.8	0
8	Correlating Coefficient of Friction and Shear Force to Platen Motor Current in Tungsten and Interlayer Dielectric Chemical Mechanical Planarization at Highly Non-Steady-State Conditions. ECS Journal of Solid State Science and Technology, 2019, 8, P634-P645.	1.8	5
9	Inferences of Slurry Bow Wave Width from Mean Coefficient of Friction and Directivity in Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2019, 8, P3018-P3021.	1.8	5
10	Ultra-Rapid Determination of Material Removal Rates Based Solely on Tribological Data in Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2019, 8, P3035-P3039.	1.8	4
11	Effect of Conditioner Type and Downforce, and Pad Surface Micro-Texture on SiO2 Chemical Mechanical Planarization Performance. Micromachines, 2019, 10, 258.	2.9	8
12	Insights into Tungsten Chemical Mechanical Planarization: Part II. Effect of Pad Surface Micro-Texture on Frictional, Thermal and Kinetic Aspects of the Process. ECS Journal of Solid State Science and Technology, 2019, 8, P3175-P3184.	1.8	7
13	Insights into Tungsten Chemical Mechanical Planarization: PartÂIII. Mini-Marathons and Associated Numerical Simulations. ECS Journal of Solid State Science and Technology, 2019, 8, P3190-P3194.	1.8	2
14	Insights into Tungsten Chemical Mechanical Planarization: Part I. Surface Micro-Texture Evolution during Pad Break-In. ECS Journal of Solid State Science and Technology, 2019, 8, P3091-P3097.	1.8	6
15	Pad-Wafer-Slurry Interface Information from Force Data. ECS Journal of Solid State Science and Technology, 2019, 8, P3133-P3144.	1.8	3
16	Correlating Shear Force and Coefficient of Friction to Platen Motor Current in Copper, Cobalt, and Shallow Trench Isolation Chemical Mechanical Planarization at Highly Non-Steady-State Conditions. ECS Journal of Solid State Science and Technology, 2019, 8, P704-P714.	1.8	5
17	Correlating Removal Rate to Directivity in Copper Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2019, 8, P734-P739.	1.8	1
18	Impact of Polisher Kinematics and Conditioner Disc Designs on Fluid Transport during Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2019, 8, P757-P763.	1.8	2

Yasa Sampurno

#	Article	IF	CITATIONS
19	Application of a Slurry Injection System to Cobalt "Buff Step―Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2018, 7, P170-P174.	1.8	6
20	Effect of CVD-Coated Diamond Discs on Pad Surface Micro-Texture and Polish Performance in Copper CMP. ECS Journal of Solid State Science and Technology, 2018, 7, P9-P14.	1.8	21
21	Cobalt "Buff Step―Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2018, 7, P114-P117.	1.8	5
22	Visualizing Slurry Flow in Chemical Mechanical Planarization via High-Speed Videography. ECS Journal of Solid State Science and Technology, 2018, 7, P118-P124.	1.8	4
23	Chemical Mechanical Planarization and Old Italian Violins. Micromachines, 2018, 9, 37.	2.9	7
24	Effect of Conditioner Type and Downforce, and Pad Break-In Time, on Pad Surface Micro-Texture in Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2018, 7, P677-P688.	1.8	17
25	Characterization of CMP Slurries Using Densitometry and Refractive Index Measurements. Micromachines, 2018, 9, 542.	2.9	3
26	Insights into the Tribological and Kinetic Attributes of Retaining Rings in Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2018, 7, P447-P451.	1.8	4
27	Effect of Conditioning Downforce and Pad Break-In Time on Pad Surface Micro-Texture. ECS Journal of Solid State Science and Technology, 2018, 7, P274-P280.	1.8	14
28	Communication—Tribology of Retaining Rings in Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2018, 7, P266-P268.	1.8	4
29	Effect of Retaining Ring Slot Designs, Conditioning Discs and Conditioning Schemes on the Slurry Bow Wave Width during Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2018, 7, P253-P259.	1.8	7
30	Fractional In Situ Pad Conditioning in Chemical Mechanical Planarization. Tribology Letters, 2017, 65, 1.	2.6	7
31	Method for Ultra Rapid Determination of the Lubrication Mechanism in Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2017, 6, P32-P37.	1.8	17
32	Effect of Pad Surface Micro-Texture on Tribological, Thermal and Kinetic Characterizations during Copper Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2017, 6, P201-P206.	1.8	20
33	Application of the Stribeck+ Curve in Silicon Dioxide Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2017, 6, P161-P164.	1.8	16
34	Improvements in Stribeck Curves for Copper and Tungsten Chemical Mechanical Planarization on Soft Pads. ECS Journal of Solid State Science and Technology, 2017, 6, P290-P295.	1.8	14
35	Slurry Injection Schemes on the Extent of Slurry Mixing and Availability during Chemical Mechanical Planarization. Micromachines, 2017, 8, 170.	2.9	6
36	Effect of Pad Surface Micro-Texture on Removal Rate during Tungsten Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2016, 5, P345-P348.	1.8	16

Yasa Sampurno

#	Article	IF	CITATIONS
37	Feasibility of a Real-Time Method in Determine the Extent of Pad Break-In During Copper Chemical Mechanical Planarization. Tribology Letters, 2016, 62, 1.	2.6	6
38	Effect of pad groove width on slurry mean residence time and slurry utilization efficiency in CMP. Microelectronic Engineering, 2016, 157, 60-63.	2.4	19
39	Effect of temperature in titanium chemical mechanical planarization. Japanese Journal of Applied Physics, 2015, 54, 076502.	1.5	11
40	Effect of Slurry Applicationâ^Injection Schemes on Slurry Availability during Chemical Mechanical Planarization (CMP). Electrochemical and Solid-State Letters, 2012, 15, H118.	2.2	14
41	Tribological, thermal, and kinetic attributes of 300 vs. 450 mm chemical mechanical planarization processes. , 2012, , .		3
42	Pattern evolution in shallow trench isolation chemical mechanical planarization via real-time shear and down forces spectral analyses. Microelectronic Engineering, 2011, 88, 2857-2861.	2.4	11
43	Tribological, Thermal, and Wear Characteristics of Poly(phenylene sulfide) and Polyetheretherketone Retaining Rings in Interlayer Dielectric CMP. Electrochemical and Solid-State Letters, 2010, 13, H391.	2.2	8
44	Tribological and Kinetic Characterization of 300-mm Copper Chemical Mechanical Planarization Process. ECS Transactions, 2010, 27, 587-592.	0.5	4
45	Investigating Effect of Conditioner Aggressiveness on Removal Rate during Interlayer Dielectric Chemical Mechanical Planarization through Confocal Microscopy and Dual Emission Ultraviolet-Enhanced Fluorescence Imaging. Japanese Journal of Applied Physics, 2010, 49, 026501.	1.5	31
46	End-Point Detection of Ta/TaN Chemical Mechanical Planarization via Forces Analysis. Japanese Journal of Applied Physics, 2010, 49, 05FC01.	1.5	20
47	Feasibility of real-time detection of abnormality in inter layer dielectric slurry during chemical mechanical planarization using frictional analysis. Thin Solid Films, 2008, 516, 7667-7674.	1.8	17
48	Effect of Slurry Injection Position on Slurry Mixing, Friction, Removal Rate, and Temperature in Copper CMP. Journal of the Electrochemical Society, 2005, 152, G841.	2.9	16