Xu Longhua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8959868/publications.pdf

Version: 2024-02-01

117571 168321 2,932 72 34 53 citations h-index g-index papers 73 73 73 1016 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chemical Engineering Science, 2017, 164, 99-107.	1.9	140
2	Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Minerals Engineering, 2013, 41, 41-45.	1.8	135
3	One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing. Journal of Materials Chemistry A, 2016, 4, 15880-15887.	5 . 2	133
4	Effect of Pb 2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector. Applied Surface Science, 2017, 425, 796-802.	3.1	104
5	Synergistic effect of mixed cationic/anionic collectors on flotation and adsorption of muscovite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492, 181-189.	2.3	96
6	Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Separation and Purification Technology, 2016, 169, 33-42.	3.9	93
7	A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. Journal of Cleaner Production, 2018, 174, 625-633.	4.6	85
8	Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Minerals Engineering, 2016, 89, 84-92.	1.8	83
9	Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors. International Journal of Mineral Processing, 2017, 166, 102-107.	2.6	82
10	Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Minerals Engineering, 2018, 127, 42-47.	1.8	77
11	The flotation and adsorption of mixed collectors on oxide and silicate minerals. Advances in Colloid and Interface Science, 2017, 250, 1-14.	7. O	74
12	Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Minerals Engineering, 2018, 126, 16-23.	1.8	73
13	Effect of dissolved fluorite and barite species on the flotation and adsorption behavior of bastnaesite. Separation and Purification Technology, 2020, 237, 116387.	3.9	72
14	One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains. Biosensors and Bioelectronics, 2016, 77, 950-956.	5. 3	68
15	The effect of dissolved calcite species on the flotation of bastnaesite using sodium oleate. Minerals Engineering, 2020, 145, 106095.	1.8	68
16	Anisotropic adsorption of oleate on diaspore and kaolinite crystals: Implications for their flotation separation. Applied Surface Science, 2014, 321, 331-338.	3.1	67
17	Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite. Powder Technology, 2019, 345, 35-42.	2.1	64
18	Effects of ultrasonic pre-treatment on the flotation of ilmenite and collector adsorption. Minerals Engineering, 2019, 137, 124-132.	1.8	63

#	Article	IF	Citations
19	Influence of surface dissolution on sodium oleate adsorption on ilmenite and its gangue minerals by ultrasonic treatment. Applied Surface Science, 2020, 500, 144038.	3.1	63
20	A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks. Science of the Total Environment, 2022, 830, 154766.	3.9	62
21	Flotation and co–adsorption of mixed collectors octanohydroxamic acid/sodium oleate on bastnaesite. Journal of Alloys and Compounds, 2020, 819, 152948.	2.8	61
22	Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation. Applied Surface Science, 2017, 426, 1005-1022.	3.1	56
23	Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite. Minerals Engineering, 2019, 137, 160-170.	1.8	51
24	Selective flotation separation of bastnaesite from calcite using xanthan gum as a depressant. Applied Surface Science, 2020, 512, 145714.	3.1	51
25	Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals. Advances in Colloid and Interface Science, 2018, 256, 340-351.	7.0	50
26	In Situ Adsorption of Mixed Anionic/Cationic Collectors in a Spodumene–Feldspar Flotation System: Implications for Collector Design. Langmuir, 2020, 36, 8086-8099.	1.6	49
27	Selective flotation separation of spodumene from feldspar using sodium alginate as an organic depressant. Separation and Purification Technology, 2020, 248, 117122.	3.9	49
28	An in situ ATR-FTIR study of mixed collectors BHA/DDA adsorption in ilmenite-titanaugite flotation system. International Journal of Mining Science and Technology, 2021, 31, 689-697.	4.6	49
29	A comparison study of adsorption of benzohydroxamic acid and amyl xanthate on smithsonite with dodecylamine as co-collector. Applied Surface Science, 2017, 426, 1141-1147.	3.1	48
30	Selective flotation of ilmenite from olivine using the acidified water glass as depressant. International Journal of Mineral Processing, 2016, 157, 73-79.	2.6	47
31	In situ adsorption of mixed collectors BHA/DDA in spodumene-feldspar flotation system. Separation and Purification Technology, 2020, 251, 117325.	3.9	42
32	Effect of a CA depressant on flotation separation of celestite from fluorite and calcite using SDS as a collector. Minerals Engineering, 2017, 111, 201-208.	1.8	41
33	A comparison study of the flotation and adsorption behaviors of diaspore and kaolinite with quaternary ammonium collectors. Minerals Engineering, 2014, 65, 124-129.	1.8	40
34	Effect of glycerol on the preparation of phosphogypsum-based CaSO4·0.5H2O whiskers. Journal of Materials Science, 2014, 49, 1957-1963.	1.7	38
35	Flotation separation of ilmenite from titanaugite using mixed collectors. Separation Science and Technology, 2016, 51, 1840-1846.	1.3	34
36	The effect of citric acid in the flotation separation of bastnaesite from fluorite and calcite using mixed collectors. Applied Surface Science, 2020, 529, 147166.	3.1	34

#	Article	IF	Citations
37	New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model. Journal of Colloid and Interface Science, 2017, 505, 500-508.	5.0	32
38	Selective flotation and adsorption of ilmenite from titanaugite by a novel method: Ultrasonic treatment. Powder Technology, 2020, 363, 38-47.	2.1	29
39	Microscale insights into the influence of grinding media on spodumene micro-flotation using mixed anionic/cationic collectors. International Journal of Mining Science and Technology, 2022, 32, 171-179.	4.6	29
40	Flotation and adsorption of quaternary ammonium salts collectors on kaolinite of different particle size. International Journal of Mining Science and Technology, 2013, 23, 249-253.	4.6	27
41	Evaluation of l-cysteine as an eco-friendly depressant for the selective separation of MoS2 from PbS by flotation. Journal of Molecular Liquids, 2019, 282, 177-186.	2.3	27
42	The selective flotation separation of celestite from fluorite and calcite using a novel depressant EDTA. Powder Technology, 2019, 352, 62-71.	2.1	26
43	Effects of microwave pre-treatment on the flotation of ilmenite and titanaugite. Minerals Engineering, 2020, 155, 106452.	1.8	23
44	Flotation and Adsorption of a New Polysaccharide Depressant on Pyrite and Talc in the Presence of a Pre-Adsorbed Xanthate Collector. Minerals (Basel, Switzerland), 2017, 7, 40.	0.8	21
45	Influence of ultrasound pre-treatment on ilmenite surface chemical properties and collectors' adsorption behaviour. Ultrasonics Sonochemistry, 2019, 57, 98-107.	3.8	21
46	Adsorption behaviors and mechanisms of dodecyltrimethyl ammonium chloride and cetyltrimethyl ammonium chloride on illite flotation. Powder Technology, 2018, 331, 218-225.	2.1	20
47	Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 127987.	2.3	18
48	Depression mechanism of pyrophyllite by a novel polysaccharide xanthan gum. Minerals Engineering, 2019, 132, 134-141.	1.8	16
49	A novel depressant for selective flotation separation of pyrite and pyrophyllite. Applied Surface Science, 2019, 487, 9-16.	3.1	15
50	Microstructure and mechanical properties of metakaolin-based geopolymer composites containing high volume of spodumene tailings. Applied Clay Science, 2022, 218, 106412.	2.6	15
51	The activation mechanism of metal ions on spodumene flotation from the perspective of in situ ATR-FTIR and ToF-SIMS. Minerals Engineering, 2022, 182, 107567.	1.8	15
52	Synergistic Adsorption and Flotation of New Mixed Cationic/Nonionic Collectors on Muscovite. Minerals (Basel, Switzerland), 2017, 7, 74.	0.8	13
53	The Effect of Polystyrene on the Carrier Flotation of Fine Smithsonite. Minerals (Basel, Switzerland), 2017, 7, 52.	0.8	12
54	Strengthened floatation of molybdite using oleate with suitable co-collector. Minerals Engineering, 2018, 122, 99-105.	1.8	12

#	Article	IF	CITATIONS
55	Surface Interaction of Nanoscale Water Film with SDS from Computational Simulation and Film Thermodynamics. Entropy, 2017, 19, 620.	1.1	10
56	Effects of grinding media on the flotation behavior of spodumene in mixed anionic/cationic collectors system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127213.	2.3	10
57	Effects of particle size and chain length on flotation of quaternary ammonium salts onto kaolinite. Mineralogy and Petrology, 2015, 109, 309-316.	0.4	9
58	New insight into adsorption of novel ternary mixed collector in ilmenite–titanaugite flotation system. Minerals Engineering, 2022, 176, 107319.	1.8	9
59	Anisotropic surface chemistry properties of salt-type and oxide mineral crystals. Minerals Engineering, 2020, 154, 106411.	1.8	8
60	Influence of aluminum–sodium silicate on olivine flotation with sodium oleate. Minerals Engineering, 2019, 143, 106008.	1.8	7
61	Optimization of Genetic Algorithm through Use of Back Propagation Neural Network in Forecasting Smooth Wall Blasting Parameters. Mathematics, 2022, 10, 1271.	1.1	7
62	Comparative Studies of Quaternary Ammonium Salts on the Aggregation and Dispersion Behavior of Kaolinite and Quartz. Minerals (Basel, Switzerland), 2019, 9, 473.	0.8	6
63	Improved flotation of artificial galena using a new catanionic mixture. Minerals Engineering, 2020, 148, 106206.	1.8	6
64	Revealing the Multiâ€Electron Reaction Mechanism of Na ₃ V ₂ O ₂ (PO ₄) ₂ F Towards Improved Lithium Storage. ChemSusChem, 2021, 14, 2984-2991.	3.6	6
65	New insights into the mixed anionic/cationic collector adsorption on ilmenite and titanaugite: An in situ ATR-FTIR/2D-COS study. Minerals Engineering, 2021, 169, 106946.	1.8	6
66	Surface chemistry considerations of gangue dissolved species in the bastnaesite flotation system. Fundamental Research, 2022, 2, 748-756.	1.6	6
67	Recycling spodumene flotation tailings in cement mortar: A synergy with metakaolin. Minerals Engineering, 2021, 172, 107165.	1.8	5
68	Quantitative Investigation of Roasting-magnetic Separation for Hematite Oolitic-ores: Mechanisms and Industrial Application. Open Chemistry, 2017, 15, 389-399.	1.0	4
69	Is spodumene flotation tailings suitable for the preparation of ceramics?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129465.	2.3	4
70	Sintering behavior and mechanical properties of sintered ceramics based on spodumene tailings. Journal of Central South University, 2021, 28, 1637-1651.	1.2	3
71	Effects of spodumene flotation tailings as aggregates on mechanical properties of cement mortar. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128346.	2.3	2
72	Study of Microscopic Structure of Ceramic Materials Prepared from Nonmetallic Mineral Group Associated with Skarn-Type Gold Deposits. Journal of Nanoscience and Nanotechnology, 2021, 21, 584-590.	0.9	O