Mark E Olson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8959846/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short Communication. Basic wood density and moisture content of 14 shrub species under two different site conditions in the Chilean Mediterranean shrubland. Forest Systems, 2022, 31, eSC01-eSC01.	0.3	0
2	The vessel wall thickness–vessel diameter relationship across woody angiosperms. American Journal of Botany, 2022, 109, 856-873.	1.7	8
3	Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards. Nature Communications, 2022, 13, .	12.8	2
4	Toward a general theory of plant carbon economics. Trends in Ecology and Evolution, 2022, 37, 829-837.	8.7	19
5	Linking xylem structure and function: the comparative method in from the cold. New Phytologist, 2022, 235, 815-820.	7.3	2
6	Replicated radiation of a plant clade along a cloud forest archipelago. Nature Ecology and Evolution, 2022, 6, 1318-1329.	7.8	11
7	Functional Diversity in Woody Organs of Tropical Dry Forests and Implications for Restoration. Sustainability, 2022, 14, 8362.	3.2	4
8	Towards the flower economics spectrum. New Phytologist, 2021, 229, 665-672.	7.3	41
9	Inner bark as a crucial tissue for nonâ€structural carbohydrate storage across three tropical woody plant communities. Plant, Cell and Environment, 2021, 44, 156-170.	5.7	36
10	Tipâ€ŧoâ€base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. New Phytologist, 2021, 229, 1877-1893.	7.3	72
11	The Widened Pipe Model of plant hydraulic evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
12	Geographical variation in the bill–flower fit in a plant–pollinator interaction in western Mexico. Biotropica, 2021, 53, 1203-1212.	1.6	1
13	Exploring the use of Moringa oleifera as a vegetable in Agua Caliente Nueva, Jalisco, Mexico: A qualitative study. Food Frontiers, 2021, 2, 294-304.	7.4	2
14	Tree Mortality: Testing the Link Between Drought, Embolism Vulnerability, and Xylem Conduit Diameter Remains a Priority. Frontiers in Forests and Global Change, 2021, 4, .	2.3	21
15	OUP accepted manuscript. Journal of Experimental Botany, 2021, 72, 7648-7652.	4.8	3
16	The Comparative Method is Not Macroevolution: Across-Species Evidence for Within-Species Process. Systematic Biology, 2021, 70, 1272-1281.	5.6	6
17	Stem length, not climate, controls vessel diameter in two trees species across a sharp precipitation gradient. New Phytologist, 2020, 225, 2347-2355.	7.3	37
18	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038

#	Article	IF	CITATIONS
19	From Carlquist's ecological wood anatomy to Carlquist's Law: why comparative anatomy is crucial for functional xylem biology. American Journal of Botany, 2020, 107, 1328-1341.	1.7	25
20	Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell and Environment, 2020, 43, 3068-3080.	5.7	13
21	Metalliferous conditions induce regulation in antioxidant activities, polyphenolics and nutritional quality of <i>Moringa oleifera</i> L. International Journal of Phytoremediation, 2020, 22, 1348-1361.	3.1	6
22	Xylem vesselâ€diameter–shootâ€length scaling: ecological significance of porosity types and other traits. Ecological Monographs, 2020, 90, e01410.	5.4	40
23	Hydraulic traits vary as the result of tip-to-base conduit widening in vascular plants. Journal of Experimental Botany, 2020, 71, 4232-4242.	4.8	23
24	Cheap and attractive: water relations and floral adaptation. New Phytologist, 2019, 223, 8-10.	7.3	8
25	A Strategy to Deliver Precise Oral Doses of the Glucosinolates or Isothiocyanates from Moringa oleifera Leaves for Use in Clinical Studies. Nutrients, 2019, 11, 1547.	4.1	34
26	Constant theoretical conductance via changes in vessel diameter and number with height growth in Moringa oleifera. Journal of Experimental Botany, 2019, 70, 5765-5772.	4.8	15
27	Plant Evolutionary Ecology in the Age of the Extended Evolutionary Synthesis. Integrative and Comparative Biology, 2019, 59, 493-502.	2.0	12
28	A User's Guide to Metaphors In Ecology and Evolution. Trends in Ecology and Evolution, 2019, 34, 605-615.	8.7	39
29	To furcate or not to furcate: the dance between vessel number and diameter in leaves. Journal of Experimental Botany, 2019, 70, 5990-5993.	4.8	10
30	When Short Stature Is an Asset in Trees. Trends in Ecology and Evolution, 2019, 34, 193-199.	8.7	53
31	Spandrels and trait delimitation: No such thing as "architectural constraint― Evolution & Development, 2019, 21, 59-71.	2.0	15
32	Molecular evidence for repeated recruitment of wild Christmas poinsettia (Euphorbia pulcherrima) into traditional horticulture in Mexico. Genetic Resources and Crop Evolution, 2019, 66, 481-490.	1.6	1
33	Nearly 200Âyears of sustained selection have not overcome the leaf area–stem size relationship in the poinsettia. Evolutionary Applications, 2018, 11, 1401-1411.	3.1	6
34	Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell and Environment, 2018, 41, 245-260.	5.7	81
35	Wild and domesticated Moringa oleifera differ in taste, glucosinolate composition, and antioxidant potential, but not myrosinase activity or protein content. Scientific Reports, 2018, 8, 7995.	3.3	35
36	Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7551-7556.	7.1	254

#	Article	IF	CITATIONS
37	Transport efficiency and cavitation resistance in developing shoots: a risk worth taking. Tree Physiology, 2018, 38, 1085-1087.	3.1	5
38	Carbon limitation, stem growth rate and the biomechanical cause of Corner's rules. Annals of Botany, 2018, 122, 583-592.	2.9	19
39	Scaling of Xylem Vessel Diameter with Plant Size: Causes, Predictions, and Outstanding Questions. Current Forestry Reports, 2017, 3, 46-59.	7.4	106
40	Testing the hypothesis that biological modularity is shaped by adaptation: Xylem in the <i>Bursera simaruba</i> clade of tropical trees. Evolution & Development, 2017, 19, 111-123.	2.0	13
41	Exploring the bark thickness–stem diameter relationship: clues from lianas, successive cambia, monocots and gymnosperms. New Phytologist, 2017, 215, 569-581.	7.3	36
42	Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell and Environment, 2017, 40, 277-289.	5.7	67
43	Leaf Protein and Mineral Concentrations across the "Miracle Tree―Genus Moringa. PLoS ONE, 2016, 11, e0159782.	2.5	54
44	Allometric Trajectories and "Stress― A Quantitative Approach. Frontiers in Plant Science, 2016, 7, 1681.	3.6	24
45	Trubs, but no trianas: filled and empty regions of angiosperm stem length-diameter-mechanics space. Botanical Journal of the Linnean Society, 2015, 179, 361-373.	1.6	4
46	How to Study Adaptation (and Why To Do It That Way). Quarterly Review of Biology, 2015, 90, 167-191.	0.1	51
47	Practice-Oriented Controversies and Borrowed Epistemic Credibility In Current Evolutionary Biology: Phylogeography As A Case Study. Perspectives on Science, 2015, 23, 310-334.	1.0	Ο
48	Apparent similarity, underlying homoplasy: Morphology and molecular phylogeny of the North American clade of <i>Manihot</i> . American Journal of Botany, 2015, 102, 520-532.	1.7	5
49	Xylem hydraulic evolution, <scp>I</scp> . <scp>W</scp> . <scp>B</scp> ailey, and <scp>N</scp> ardini & <scp>J</scp> ansen (2013): pattern and process. New Phytologist, 2014, 203, 7-11.	7.3	14
50	The phylogeography debate and the epistemology of model-based evolutionary biology. Biology and Philosophy, 2014, 29, 833-850.	1.4	5
51	Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters, 2014, 17, 988-997.	6.4	220
52	The evolution of bark mechanics and storage across habitats in a clade of tropical trees. American Journal of Botany, 2014, 101, 764-777.	1.7	55
53	Do lianas really have wide vessels? Vessel diameter–stem length scaling in non-self-supporting plants. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 288-295	2.7	50
54	Molecular phylogenetics and morphology of Beaucarnea (Ruscaceae) as distinct from Nolina, and the submersion of Calibanus into Beaucarnea. Taxon, 2014, 63, 1193-1211.	0.7	7

#	Article	IF	CITATIONS
55	Convergent Vessel Diameter–Stem Diameter Scaling across Five Clades of New and Old World Eudicots from Desert to Rain Forest. International Journal of Plant Sciences, 2013, 174, 1062-1078.	1.3	17
56	Leaf phenology is associated with soil water availability and xylem traits in a tropical dry forest. Trees - Structure and Function, 2013, 27, 745-754.	1.9	71
57	Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist, 2013, 197, 1204-1213.	7.3	141
58	To converge or not to converge in environmental space: testing for similar environments between analogous succulent plants of North America and Africa. Annals of Botany, 2013, 111, 1125-1138.	2.9	23
59	Poinsettia's wild ancestor in the Mexican dry tropics: Historical, genetic, and environmental evidence. American Journal of Botany, 2012, 99, 1146-1157.	1.7	17
60	Ontogenetic modulation of branch size, shape, and biomechanics produces diversity across habitats in the <i>Bursera simaruba</i> clade of tropical trees. Evolution & Development, 2012, 14, 437-449.	2.0	21
61	The developmental renaissance in adaptationism. Trends in Ecology and Evolution, 2012, 27, 278-287.	8.7	72
62	Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 2012, 93, 2397-2406.	3.2	148
63	Linear Trends in Botanical Systematics and the Major Trends of Xylem Evolution. Botanical Review, The, 2012, 78, 154-183.	3.9	17
64	Insights into the historical construction of speciesâ€rich Mesoamerican seasonally dry tropical forests: the diversification of <i>Bursera</i> (Burseraceae, Sapindales). New Phytologist, 2012, 193, 276-287.	7.3	135
65	<i>Pinus nelsonii</i> and a Cladistic Analysis of Pinaceae Ovulate Cone Characters. Systematic Botany, 2011, 36, 583-594.	0.5	15
66	Diversification in species complexes: Tests of species origin and delimitation in the Bursera simaruba clade of tropical trees (Burseraceae). Molecular Phylogenetics and Evolution, 2010, 57, 798-811.	2.7	33
67	Are spurred cyathia a key innovation? Molecular systematics and trait evolution in the slipper spurges (Pedilanthus clade: <i>Euphorbia</i> , Euphorbiaceae). American Journal of Botany, 2010, 97, 493-510.	1.7	30
68	Thinking in continua: beyond the "adaptive radiation―metaphor. BioEssays, 2009, 31, 1337-1346.	2.5	52
69	Universal foliageâ€stem scaling across environments and species in dicot trees: plasticity, biomechanics and Corner's Rules. Ecology Letters, 2009, 12, 210-219.	6.4	78
70	A GISâ€Based Comparison of the Mexican National and IUCN Methods for Determining Extinction Risk. Conservation Biology, 2009, 23, 1156-1166.	4.7	17
71	Wood ontogeny as a model for studying heterochrony, with an example of paedomorphosis inMoringa(Moringaceae). Systematics and Biodiversity, 2007, 5, 145-158.	1.2	29
72	Testing implicit assumptions regarding the age vs. size dependence of stem biomechanics using <i>Pittocaulon</i> (<i>Senecio</i>) <i>praecox</i> (Asteraceae). American Journal of Botany, 2007, 94, 161-172.	1.7	28

#	Article	IF	CITATIONS
73	Logistic regression in comparative wood anatomy: tracheid types, wood anatomical terminology, and new inferences from the Carlquist and Hoekman southern Californian data set. Botanical Journal of the Linnean Society, 2007, 154, 331-351.	1.6	37
74	USING HETEROCHRONY TO DETECT MODULARITY IN THE EVOLUTION OF STEM DIVERSITY IN THE PLANT FAMILY MORINGACEAE. Evolution; International Journal of Organic Evolution, 2006, 60, 724-734.	2.3	50
75	Extinction threat in the <i>Pedilanthus</i> clade (<i>Euphorbia</i> , Euphorbiaceae), with special reference to the recently rediscovered <i>E. conzattii</i> (<i>P. pulchellus</i>). American Journal of Botany, 2005, 92, 634-641.	1.7	22
76	Commentary: Typology, Homology, and Homoplasy in Comparative Wood Anatomy. IAWA Journal, 2005, 26, 507-522.	2.7	13
77	Wood, bark, and pith anatomy in Pittocaulon (â^¼Senecio, Asteraceae): Water storage and systematics1. Journal of the Torrey Botanical Society, 2005, 132, 173-186.	0.3	24
78	Stem anatomy is congruent with molecular phylogenies placing Hypericopsis persica in Frankenia (Frankeniaceae): comments on vasicentric tracheids. Taxon, 2003, 52, 525-532.	0.7	14
79	Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales). American Journal of Botany, 2003, 90, 49-71.	1.7	24
80	Intergeneric Relationships within the Caricaceaeâ€Moringaceae Clade (Brassicales) and Potential Morphological Synapomorphies of the Clade and Its Families. International Journal of Plant Sciences, 2002, 163, 51-65.	1.3	43
81	Morphology of the limb, shell and head explain the variation in performance and ecology across 14 turtle taxa (12 species). Biological Journal of the Linnean Society, 0, , .	1.6	4