Stuart Forbes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8959751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deletion of kif3a in CK19 positive cells leads to primary cilia loss, biliary cell proliferation and cystic liver lesions in TAA-treated mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166335.	3.8	5
2	Human biliary epithelial cells from discarded donor livers rescue bile duct structure and function in a mouse model of biliary disease. Cell Stem Cell, 2022, 29, 355-371.e10.	11.1	19
3	Cell origin and niche availability dictate the capacity of peritoneal macrophages to colonize the cavity and omentum. Immunology, 2022, 166, 458-474.	4.4	9
4	Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunology, 2022, 23, 927-939.	14.5	21
5	Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF. Journal of Hepatology, 2022, 77, 1325-1338.	3.7	31
6	Regional Differences in Human Biliary Tissues and Corresponding In Vitro–Derived Organoids. Hepatology, 2021, 73, 247-267.	7.3	61
7	TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. Journal of Hepatology, 2021, 74, 860-872.	3.7	40
8	Cell therapy for advanced liver diseases: Repair or rebuild. Journal of Hepatology, 2021, 74, 185-199.	3.7	63
9	Cellular Senescence in Liver Disease and Regeneration. Seminars in Liver Disease, 2021, 41, 050-066.	3.6	26
10	Fibroblast growth factor 7 releasing particles enhance islet engraftment and improve metabolic control following islet transplantation in mice with diabetes. American Journal of Transplantation, 2021, 21, 2950-2963.	4.7	12
11	Response differences of HepG2 and Primary Mouse Hepatocytes to morphological changes in electrospun PCL scaffolds. Scientific Reports, 2021, 11, 3059.	3.3	8
12	Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells. Nature Communications, 2021, 12, 1770.	12.8	58
13	Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Science Translational Medicine, 2021, 13, .	12.4	83
14	Inhibition of nuclear factor (erythroid-derived 2)-like 2 promotes hepatic progenitor cell activation and differentiation. Npj Regenerative Medicine, 2021, 6, 28.	5.2	14
15	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	11.1	133
16	Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure. IScience, 2021, 24, 102552.	4.1	9
17	Notch-IGF1 signaling during liver regeneration drives biliary epithelial cell expansion and inhibits hepatocyte differentiation. Science Signaling, 2021, 14, .	3.6	17
18	Noninvasive Detection of Ischemic Vascular Damage in a Pig Model of Liver Donation After Circulatory Death. Hepatology, 2021, 74, 428-443.	7.3	7

#	Article	IF	CITATIONS
19	Liver regeneration and inflammation: from fundamental science to clinical applications. Nature Reviews Molecular Cell Biology, 2021, 22, 608-624.	37.0	122
20	Pharmacological Activation of Nrf2 Enhances Functional Liver Regeneration. Hepatology, 2021, 74, 973-986.	7.3	29
21	REPLY:. Hepatology, 2021, 74, 2310-2311.	7.3	0
22	Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. Journal of Hepatology, 2021, 75, 634-646.	3.7	51
23	Study protocol: a multicentre, open-label, parallel-group, phase 2, randomised controlled trial of autologous macrophage therapy for liver cirrhosis (MATCH). BMJ Open, 2021, 11, e053190.	1.9	14
24	Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology, 2020, 71, 972-989.	7.3	40
25	Modulation of Biliary Cancer Chemoâ€Resistance Through MicroRNAâ€Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology, 2020, 72, 982-996.	7.3	30
26	Epithelial Plasticity during Liver Injury and Regeneration. Cell Stem Cell, 2020, 27, 557-573.	11.1	72
27	A blueprint for translational regenerative medicine. Science Translational Medicine, 2020, 12, .	12.4	24
28	TFEB regulates murine liver cell fate during development and regeneration. Nature Communications, 2020, 11, 2461.	12.8	32
29	Controlling Electrospun Polymer Morphology for Tissue Engineering Demonstrated Using hepG2 Cell Line. Journal of Visualized Experiments, 2020, , .	0.3	10
30	Alternatively activated macrophages promote resolution of necrosis following acute liver injury. Journal of Hepatology, 2020, 73, 349-360.	3.7	97
31	Expansion, in vivo–ex vivo cycling, and genetic manipulation of primary human hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1678-1688.	7.1	41
32	Absolute measurement of the tissue origins of cell-free DNA in the healthy state and following paracetamol overdose. BMC Medical Genomics, 2020, 13, 60.	1.5	10
33	Phenotype instability of hepatocyte-like cells produced by direct reprogramming of mesenchymal stromal cells. Stem Cell Research and Therapy, 2020, 11, 154.	5.5	14
34	Macrophages as a Cell-Based Therapy for Liver Disease. Seminars in Liver Disease, 2019, 39, 442-451.	3.6	27
35	Embryonic mesothelial-derived hepatic lineage of quiescent and heterogenous scar-orchestrating cells defined but suppressed by WT1. Nature Communications, 2019, 10, 4688.	12.8	19
36	Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nature Cell Biology, 2019, 21, 1321-1333.	10.3	102

#	Article	IF	CITATIONS
37	Safety profile of autologous macrophage therapy for liver cirrhosis. Nature Medicine, 2019, 25, 1560-1565.	30.7	121
38	An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Research, 2019, 79, 1480-1492.	0.9	87
39	Beneficial Noncancerous Mutations in Liver Disease. Trends in Genetics, 2019, 35, 475-477.	6.7	3
40	Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Scientific Reports, 2019, 9, 6293.	3.3	71
41	Biliary-derived hepatocytes in chronic liver injury: Bringing new troops to the battlefield?. Journal of Hepatology, 2019, 70, 1051-1053.	3.7	3
42	OTH-10â€Therapeutic interleukin 4 modulates monocyte dynamics and accelerates repair following acute liver injury. , 2019, , .		0
43	Quantifying changes in innate immune function following liver transplantation for chronic liver disease. Hpb, 2019, 21, 1322-1326.	0.3	2
44	Hepatocyte‧pecific βâ€Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate Into Hepatocytes. Hepatology, 2019, 69, 742-759.	7.3	102
45	Mesenchymal Stem Cells and Induced Bone Marrow-Derived Macrophages Synergistically Improve Liver Fibrosis in Mice. Stem Cells Translational Medicine, 2019, 8, 271-284.	3.3	102
46	Cellular Plasticity in Liver Regeneration: Spotlight on Cholangiocytes. Hepatology, 2019, 69, 2286-2289.	7.3	7
47	Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nature Communications, 2018, 9, 1020.	12.8	105
48	Haematopoietic stem cells in cirrhosis – Authors' reply. The Lancet Gastroenterology and Hepatology, 2018, 3, 298-299.	8.1	0
49	GADD45Î ² Loss Ablates Innate Immunosuppression in Cancer. Cancer Research, 2018, 78, 1275-1292.	0.9	33
50	11Betaâ€hydroxysteroid dehydrogenaseâ€1 deficiency or inhibition enhances hepatic myofibroblast activation in murine liver fibrosis. Hepatology, 2018, 67, 2167-2181.	7.3	21
51	The STAT3–IL-10–IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. Journal of Immunology, 2018, 200, 1169-1187.	0.8	74
52	Studies of macrophage therapy for cirrhosis – From mice to men. Journal of Hepatology, 2018, 68, 1090-1091.	3.7	3
53	Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. The Lancet Gastroenterology and Hepatology, 2018, 3, 25-36.	8.1	113
54	Telomerase Activity Links to Regenerative Capacity of Hepatocytes. Transplantation, 2018, 102, 1587-1588.	1.0	1

#	Article	IF	CITATIONS
55	Hepatic progenitors in liver regeneration. Journal of Hepatology, 2018, 69, 1394-1395.	3.7	9
56	The Challenges of First-in-Human Stem Cell Clinical Trials: What Does This Mean for Ethics and Institutional Review Boards?. Stem Cell Reports, 2018, 10, 1429-1431.	4.8	22
57	3D human liver tissue from pluripotent stem cells displays stable phenotype in vitro and supports compromised liver function in vivo. Archives of Toxicology, 2018, 92, 3117-3129.	4.2	89
58	TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	12.4	161
59	Stem Cells and Hepatocyte Transplantation. , 2018, , 84-97.e3.		1
60	Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut, 2017, 66, 1268-1277.	12.1	75
61	Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance–based detection in vivo. Cytotherapy, 2017, 19, 555-569.	0.7	44
62	Milk Fat Globule-EGF Factor 8 for Liver Fibrosis Therapy: Creaming Off the Beneficial Effects of Mesenchymal StromalÂCells. Gastroenterology, 2017, 152, 943-946.	1.3	1
63	Patients with the worst outcomes after paracetamol (acetaminophen)â€induced liver failure have an early monocytopenia. Alimentary Pharmacology and Therapeutics, 2017, 45, 443-454.	3.7	18
64	Raman spectroscopy and regenerative medicine: a review. Npj Regenerative Medicine, 2017, 2, 12.	5.2	147
65	Understanding liver regeneration to bring new insights to the mechanisms driving cholangiocarcinoma. Npj Regenerative Medicine, 2017, 2, 13.	5.2	10
66	Injection of embryonic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury. Npj Regenerative Medicine, 2017, 2, 14.	5.2	39
67	Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature, 2017, 547, 350-354.	27.8	405
68	Development, functional characterization and validation of methodology for GMP-compliant manufacture of phagocytic macrophages: A novel cellular therapeutic for liver cirrhosis. Cytotherapy, 2017, 19, 1113-1124.	0.7	32
69	Vasopressin Regulates Extracellular Vesicle Uptake by Kidney Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 3345-3355.	6.1	48
70	The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size. Nature Cell Biology, 2016, 18, 467-479.	10.3	253
71	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	17.8	964
72	Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12250-12255.	7.1	68

#	Article	IF	CITATIONS
73	Reducing Hepatocyte Injury and Necrosis in Response to Paracetamol Using Noncoding RNAs. Stem Cells Translational Medicine, 2016, 5, 764-772.	3.3	36
74	Interleukin-13 Activates Distinct Cellular Pathways Leading to Ductular Reaction, Steatosis, and Fibrosis. Immunity, 2016, 45, 145-158.	14.3	98
75	Liver regeneration — mechanisms and models to clinical application. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 473-485.	17.8	278
76	Polyurethane: Stable Cell Phenotype Requires Plasticity: Polymer Supported Directed Differentiation Reveals a Unique Gene Signature Predicting Stable Hepatocyte Performance (Adv. Healthcare Mater.) Tj ETQq0 () 0 7 gBT /C	Overlock 10 T
77	Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes. Stem Cell Reports, 2015, 5, 1250-1262.	4.8	123
78	Polymer Supported Directed Differentiation Reveals a Unique Gene Signature Predicting Stable Hepatocyte Performance. Advanced Healthcare Materials, 2015, 4, 1820-1825.	7.6	20
79	CSF1 Restores Innate Immunity After Liver Injury in Mice andÂSerum Levels Indicate Outcomes of Patients With AcuteÂLiver Failure. Gastroenterology, 2015, 149, 1896-1909.e14.	1.3	156
80	Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nature Cell Biology, 2015, 17, 971-983.	10.3	374
81	Cell therapy for liver disease: From liver transplantation to cell factory. Journal of Hepatology, 2015, 62, S157-S169.	3.7	242
82	REpeated AutoLogous Infusions of STem cells In Cirrhosis (REALISTIC): a multicentre, phase II, open-label, randomised controlled trial of repeated autologous infusions of granulocyte colony-stimulating factor (GCSF) mobilised CD133+ bone marrow stem cells in patients with cirrhosis. A study protocol for a randomised controlled trial. BMJ Open, 2015, 5, e007700-e007700.	1.9	28
83	Two Fresh Streams to Fill the Liver's Hepatocyte Pool. Cell Stem Cell, 2015, 17, 377-378.	11.1	15
84	Organoid cultures boost human liver cell expansion. Hepatology, 2015, 62, 1635-1637.	7.3	4
85	Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study. Cytotherapy, 2015, 17, 1604-1616.	0.7	50
86	Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut, 2015, 64, 312-321.	12.1	48
87	WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. Journal of Clinical Investigation, 2015, 125, 1269-1285.	8.2	215
88	Krüppel-Like Factor 4 Overexpression Initiates a Mesenchymal-to-Epithelial Transition and Redifferentiation of Human Pancreatic Cells following Expansion in Long Term Adherent Culture. PLoS ONE, 2015, 10, e0140352.	2.5	8
89	Proteinase Activated Receptor 1 Mediated Fibrosis in a Mouse Model of Liver Injury: A Role for Bone Marrow Derived Macrophages. PLoS ONE, 2014, 9, e86241.	2.5	25
90	Cell Lineage Tracing Reveals a Biliary Origin of Intrahepatic Cholangiocarcinoma. Cancer Research, 2014, 74, 1005-1010.	0.9	106

#	Article	IF	CITATIONS
91	Links Between Hepatic Fibrosis, Ductular Reaction, and Progenitor Cell Expansion. Gastroenterology, 2014, 146, 349-356.	1.3	256
92	Knocking on the door to successful hepatocyte transplantation. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 277-278.	17.8	14
93	Preparing the ground for tissue regeneration: from mechanism to therapy. Nature Medicine, 2014, 20, 857-869.	30.7	461
94	Recent advances in stem cells and regenerative medicine. QJM - Monthly Journal of the Association of Physicians, 2014, 107, 251-252.	0.5	6
95	Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Alimentary Pharmacology and Therapeutics, 2014, 39, 673-685.	3.7	56
96	Polysialic acid/neural cell adhesion molecule modulates the formation of ductular reactions in liver injury. Hepatology, 2014, 60, 1727-1740.	7.3	40
97	Bone marrow contributions to fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 955-961.	3.8	13
98	Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6542-6547.	7.1	140
99	Differentiation of progenitors in the liver: a matter of local choice. Journal of Clinical Investigation, 2013, 123, 1867-1873.	8.2	100
100	Clinical Studies of Cell Therapy for Liver Cirrhosis. , 2013, , 233-243.		0
101	Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3186-95.	7.1	793
102	SUMOylation of HNF4Î \pm regulates protein stability and hepatocyte function. Journal of Cell Science, 2012, 125, 4686-4686.	2.0	2
103	New horizons for stem cell therapy in liver disease. Journal of Hepatology, 2012, 56, 496-499.	3.7	88
104	Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Medicine, 2012, 18, 572-579.	30.7	624
105	Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology, 2012, 55, 1965-1975.	7.3	158
106	Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut, 2011, 60, 525-533.	12.1	91
107	Ly6C ^{hi} Monocytes Direct Alternatively Activated Profibrotic Macrophage Regulation of Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 569-581.	5.6	383
108	Unbiased screening of polymer libraries to define novel substrates for functional hepatocytes with inducible drug metabolism. Stem Cell Research, 2011, 6, 92-102.	0.7	95

#	Article	IF	CITATIONS
109	Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology, 2011, 53, 2003-2015.	7.3	278
110	Liver fibrogenic cells. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 207-217.	2.4	99
111	Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 2010, 51, 329-335.	7.3	389
112	Practical Barriers to Delivering Autologous Bone Marrow Stem Cell Therapy as an Adjunct to Liver Resection. Stem Cells and Development, 2010, 19, 155-162.	2.1	12
113	Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut, 2010, 59, 645-654.	12.1	151
114	Liver Development, Regeneration, and Carcinogenesis. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.	3.0	57
115	Side population cells in developing human liver are primarily haematopoietic progenitor cells. Experimental Cell Research, 2009, 315, 2141-2153.	2.6	18
116	Stem cells and liver repair. Current Opinion in Biotechnology, 2009, 20, 568-574.	6.6	52
117	Activation of stem cells in hepatic diseases. Cell and Tissue Research, 2008, 331, 283-300.	2.9	155
118	Stem cell therapy for chronic liver disease choosing the right tools for the job. Gut, 2008, 57, 153-155.	12.1	26
119	Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12301-12306.	7.1	392
120	Bone marrow stem cells and liver disease. Gut, 2007, 56, 716-724.	12.1	126
121	The Bone Marrow Functionally Contributes to Liver Fibrosis. Gastroenterology, 2006, 130, 1807-1821.	1.3	467
122	The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology, 2006, 43, 316-324.	7.3	132
123	Side population (SP) cells: Taking center stage in regeneration and liver cancer?. Hepatology, 2006, 44, 23-26.	7.3	18
124	Myelomonocytic cells are sufficient for therapeutic cell fusion in the liver. Journal of Hepatology, 2005, 42, 285-286.	3.7	4
125	Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. Journal of Clinical Investigation, 2005, 115, 56-65.	8.2	1,237
126	Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. Journal of Clinical Investigation, 2005, 115, 56-65.	8.2	845

#	Article	IF	CITATIONS
127	A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosisâ~†. Gastroenterology, 2004, 126, 955-963.	1.3	405
128	Multiple Organ Engraftment by Boneâ€Marrowâ€Derived Myofibroblasts and Fibroblasts in Boneâ€Marrowâ€Transplanted Mice. Stem Cells, 2003, 21, 514-520.	3.2	232
129	Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut, 2002, 50, 752-757.	12.1	223
130	Hepatic stem cells. Journal of Pathology, 2002, 197, 510-518.	4.5	166
131	An introduction to stem cells. Journal of Pathology, 2002, 197, 419-423.	4.5	209
132	Tri-iodothyronine and a deleted form of hepatocyte growth factor act synergistically to enhance liver proliferation and enable in vivo retroviral gene transfer via the peripheral venous system. Gene Therapy, 2000, 7, 784-789.	4.5	14
133	Synergistic growth factors enhance rat liver proliferation and enable retroviral gene transfer via a peripheral vein. Gastroenterology, 2000, 118, 591-598.	1.3	22
134	Retroviral gene transfer to the liver in vivo during tri-iodothyronine induced hyperplasia. Gene Therapy, 1998, 5, 552-555.	4.5	30
135	Isolation and expansion of the hepatic progenitor cell (HPC) population. Protocol Exchange, 0, , .	0.3	2