Bingkun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8959229/publications.pdf Version: 2024-02-01

	331670	414414
2,497	21	32
citations	h-index	g-index
32	32	3591
docs citations	times ranked	citing authors
	citations 32	2,49721citationsh-index3232

RINCKUN CHEN

#	Article	IF	CITATIONS
1	Phase control in the synthesis of cesium copper iodide compounds for their photoluminescence and radioluminescence study. Journal of Luminescence, 2022, 241, 118482.	3.1	7
2	Vacancyâ€Ordered Double Perovskite Rb ₂ ZrCl _{6â^²} <i>_x</i> Br <i>_x</i> : Facile Synthesis and Insight into Efficient Intrinsic Selfâ€Trapped Emission. Advanced Optical Materials, 2022, 10, 2101661.	7.3	30
3	In Situ Fabrication of Lead-Free Cs ₃ Cu ₂ I ₅ Nanostructures Embedded in Poly(Vinylidene Fluoride) Electrospun Fibers for Polarized Emission. ACS Applied Nano Materials, 2022, 5, 508-516.	5.0	14
4	Blue–violet emitting K2CuCl3 compound: facile synthesis, photoluminescence and radioluminescence properties. Journal of Materials Science, 2022, 57, 10260-10270.	3.7	3
5	Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media. Nano Research, 2021, 14, 2321.	10.4	12
6	Defective Ag–In–S/ZnS quantum dots: an oxygen-derived free radical scavenger for mitigating macrophage inflammation. Journal of Materials Chemistry B, 2021, 9, 8971-8979.	5.8	8
7	Stability enhancement of Cs3Cu2I5 powder with high blue emission realized by Na+ doping strategy. Journal of Luminescence, 2021, 239, 118333.	3.1	21
8	Strongly Emissive Leadâ€Free 0D Cs ₃ Cu ₂ I ₅ Perovskites Synthesized by a Room Temperature Solvent Evaporation Crystallization for Downâ€Conversion Lightâ€Emitting Devices and Fluorescent Inks. Advanced Optical Materials, 2020, 8, 1901723.	7.3	109
9	Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes. Photonics Research, 2020, 8, 768.	7.0	94
10	Stable blue-emissive aluminum acetylacetonate nanocrystals with high quantum yield of over 80% and embedded in polymer matrix for remote UV-pumped white light–emitting diodes. Nanophotonics, 2020, 9, 1509-1518.	6.0	1
11	Single Source Precursor Chemical Vapor Decomposition Method to Fabricate Stable, Bright Emissive Aluminum Hydroxide Phosphors for UVâ€Pumped White Lightâ€Emitting Devices. Advanced Optical Materials, 2018, 6, 1701115.	7.3	8
12	From Large-Scale Synthesis to Lighting Device Applications of Ternary l–Ill–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. Journal of Physical Chemistry Letters, 2018, 9, 435-445.	4.6	136
13	Waterâ€Soluble Biocompatible Copolymer Hypromellose Grafted Chitosan Able to Load Exogenous Agents and Copper Nanoclusters with Aggregationâ€Induced Emission. Advanced Functional Materials, 2018, 28, 1802848.	14.9	48
14	Hexagonal Zn _{1â^'x} Cd _x S (0.2 ≤ ≤) solid solution photocatalysts for H ₂ generation from water. Catalysis Science and Technology, 2017, 7, 982-987.	4.1	47
15	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	13.8	98
16	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	2.0	31
17	In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films. Chemistry of Materials, 2017, 29, 10206-10211.	6.7	58
18	Mesoporous Aluminum Hydroxide Synthesized by a Singleâ€Source Precursorâ€Decomposition Approach as a Highâ€Quantumâ€Yield Blue Phosphor for UVâ€Pumped Whiteâ€Lightâ€Emitting Diodes. Advanced Materi 2017, 29, 1604284.	als21.0	47

BINGKUN CHEN

#	Article	IF	CITATIONS
19	Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale, 2016, 8, 7197-7202.	5.6	97
20	Stretchable and Thermally Stable Dual Emission Composite Films of On-Purpose Aggregated Copper Nanoclusters in Carboxylated Polyurethane for Remote White Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 33993-33998.	8.0	47
21	Light-Emitting Devices: All-Copper Nanocluster Based Down-Conversion White Light-Emitting Devices (Adv. Sci. 11/2016). Advanced Science, 2016, 3, .	11.2	2
22	Reprecipitation synthesis of luminescent CH ₃ NH ₃ PbBr ₃ /NaNO ₃ nanocomposites with enhanced stability. Journal of Materials Chemistry C, 2016, 4, 11387-11391.	5.5	85
23	Water resistant CsPbX ₃ nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chemical Science, 2016, 7, 5699-5703.	7.4	499
24	Hydroxyl-Terminated CuInS ₂ Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes. Chemistry of Materials, 2016, 28, 1085-1091.	6.7	155
25	Template Synthesis of CuInS ₂ Nanocrystals from In ₂ S ₃ Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. Chemistry of Materials, 2015, 27, 5949-5956.	6.7	132
26	Pâ€80: Intelligent Remote Lightâ€Emitting Systems using PMMA and CulnS ₂ Nanocrystals Composite Films. Digest of Technical Papers SID International Symposium, 2014, 45, 1285-1287.	0.3	1
27	General Synthesis and White Light Emission of Diluted Magnetic Semiconductor Nanowires Using Single-Source Precursors. Chemistry of Materials, 2013, 25, 3260-3266.	6.7	24
28	Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale, 2013, 5, 3514.	5.6	145
29	Red emissive CuInS_2-based nanocrystals: a potential phosphor for warm white light-emitting diodes. Optics Express, 2013, 21, 10105.	3.4	55
30	Transparent, flexible and luminescent composite films by incorporating CuInS2 based quantum dots into a cyanoethyl cellulose matrix. RSC Advances, 2012, 2, 2675.	3.6	23
31	Highly Emissive and Colorâ€Tunable CuInS ₂ â€Based Colloidal Semiconductor Nanocrystals: Offâ€Stoichiometry Effects and Improved Electroluminescence Performance. Advanced Functional Materials, 2012, 22, 2081-2088.	14.9	449
32	Conjugated Polymer-Assisted Preparation of CdSe Nanospheres and Their Photovoltaic Properties. Science of Advanced Materials, 2012, 4, 342-345.	0.7	11