Philipp Koch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8959079/publications.pdf

Version: 2024-02-01

109321 123424 4,681 61 35 citations h-index papers

g-index 62 62 62 7673 all docs docs citations times ranked citing authors

61

#	Article	IF	CITATIONS
1	Asymmetric Notch activity by differential inheritance of lysosomes in human neural stem cells. Science Advances, 2022, 8, eabl5792.	10.3	5
2	Human cerebral organoids reveal progenitor pathology in EML1â€linked cortical malformation. EMBO Reports, 2022, , e54027.	4.5	19
3	Voltammetric Approach for Characterizing the Biophysical and Chemical Functionality of Human Induced Pluripotent Stem Cell-Derived Serotonin Neurons. Analytical Chemistry, 2022, 94, 8847-8856.	6.5	3
4	Cerebral organoids to unravel the mechanisms underlying malformations of human cortical development. Seminars in Cell and Developmental Biology, 2021, 111, 15-22.	5.0	5
5	<i>C9orf72</i> -derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. Science Advances, 2021, 7, .	10.3	57
6	hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells, 2021, 10, 3292.	4.1	10
7	In Vitro Recapitulation of Developmental Transitions in Human Neural Stem Cells. Stem Cells, 2019, 37, 1429-1440.	3.2	6
8	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	11.1	56
9	Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nature Biotechnology, 2019, 37, 1478-1481.	17.5	117
10	Drug discovery in psychopharmacology: from 2D models to cerebral organoids. Dialogues in Clinical Neuroscience, 2019, 21, 203-224.	3.7	9
11	Induction of Amyloid- \hat{l}^2 42 Production by Fipronil and Other Pyrazole Insecticides. Journal of Alzheimer's Disease, 2018, 62, 1663-1681.	2.6	23
12	Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity. Stem Cells Translational Medicine, 2018, 7, 477-486.	3.3	8
13	Generation of Standardized and Reproducible Forebrain-type Cerebral Organoids from Human Induced Pluripotent Stem Cells. Journal of Visualized Experiments, 2018, , .	0.3	30
14	In vitro segregation and isolation of human pluripotent stem cell-derived neural crest cells. Methods, 2018, 133, 65-80.	3.8	10
15	DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clinical Epigenetics, 2018, 10, 13.	4.1	39
16	Cortical organoids: why all this hype?. Current Opinion in Genetics and Development, 2018, 52, 22-28.	3.3	13
17	Whole-brain 3D mapping of human neural transplant innervation. Nature Communications, 2017, 8, 14162.	12.8	46
18	The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides. Cell Reports, 2017, 19, 1967-1976.	6.4	40

#	Article	IF	CITATIONS
19	An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome. Cell Reports, 2017, 19, 50-59.	6.4	223
20	MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility. Translational Oncology, 2017, 10, 70-79.	3.7	6
21	A Little Bit of Guidance: Mini Brains on Their Route to Adolescence. Cell Stem Cell, 2017, 21, 157-158.	11.1	1
22	Specific Triazine Herbicides Induce Amyloid-Î ² 42 Production. Journal of Alzheimer's Disease, 2016, 54, 1593-1605.	2.6	14
23	Specific Inhibition of \hat{I}^2 -Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Reports, 2016, 14, 2127-2141.	6.4	87
24	Phosphorylation of the amyloid \hat{l}^2 -peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathologica, 2016, 131, 525-537.	7.7	84
25	Direct Conversion Provides Old Neurons from Aged Donor's Skin. Cell Stem Cell, 2015, 17, 637-638.	11.1	3
26	Arylsulfatase A Overexpressing Human iPSC-derived Neural Cells Reduce CNS Sulfatide Storage in a Mouse Model of Metachromatic Leukodystrophy. Molecular Therapy, 2015, 23, 1519-1531.	8.2	44
27	Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nature Neuroscience, 2014, 17, 24-26.	14.8	35
28	Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restorative Neurology and Neuroscience, 2014, 32, 547-558.	0.7	60
29	Optogenetics Reveal Delayed Afferent Synaptogenesis on Grafted Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors. Stem Cells, 2014, 32, 3088-3098.	3.2	49
30	Embryonic Stem Cell–Based Modeling of Tau Pathology in Human Neurons. American Journal of Pathology, 2013, 182, 1769-1779.	3.8	35
31	Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain, 2013, 136, 3561-3577.	7.6	225
32	APP Processing in Human Pluripotent Stem Cell-Derived Neurons Is Resistant to NSAID-Based \hat{I}^3 -Secretase Modulation. Stem Cell Reports, 2013, 1, 491-498.	4.8	58
33	Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nature Reviews Molecular Cell Biology, 2013, 14, 225-236.	37.0	200
34	Automated Large-Scale Culture and Medium-Throughput Chemical Screen for Modulators of Proliferation and Viability of Human Induced Pluripotent Stem Cell–Derived Neuroepithelial-like Stem Cells. Journal of Biomolecular Screening, 2013, 18, 258-268.	2.6	38
35	Anticancer Effects of Niclosamide in Human Glioblastoma. Clinical Cancer Research, 2013, 19, 4124-4136.	7.0	135
36	Targeting the Cytosolic Innate Immune Receptors RIG-I and MDA5 Effectively Counteracts Cancer Cell Heterogeneity in Glioblastoma. Stem Cells, 2013, 31, 1064-1074.	3.2	76

#	Article	IF	Citations
37	MicroRNA-Based Promotion of Human Neuronal Differentiation and Subtype Specification. PLoS ONE, 2013, 8, e59011.	2.5	73
38	Differentiation of Human Pluripotent Stem Cells into Neural Precursors., 2012,, 375-384.		0
39	Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods, 2012, 9, 575-578.	19.0	288
40	Presenilin-1 L166P Mutant Human Pluripotent Stem Cell–Derived Neurons Exhibit Partial Loss of γ-Secretase Activity in Endogenous Amyloid-β Generation. American Journal of Pathology, 2012, 180, 2404-2416.	3.8	104
41	Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons. PLoS ONE, 2012, 7, e29597.	2.5	254
42	Functional Neuronal Cells Generated by Human Parthenogenetic Stem Cells. PLoS ONE, 2012, 7, e42800.	2.5	14
43	Human-Induced Pluripotent Stem Cells form Functional Neurons and Improve Recovery After Grafting in Stroke-Damaged Brain. Stem Cells, 2012, 30, 1120-1133.	3.2	264
44	Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain. Cellular and Molecular Life Sciences, 2012, 69, 461-470.	5.4	55
45	Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature, 2011, 480, 543-546.	27.8	282
46	A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathologica, 2011, 122, 637-650.	7.7	77
47	Bivalent histone modifications in stem cells poise miRNA loci for CpG island hypermethylation in human cancer. Epigenetics, 2011, 6, 1344-1353.	2.7	16
48	Laser-Assisted Photoablation of Human Pluripotent Stem Cells from Differentiating Cultures. Stem Cell Reviews and Reports, 2010, 6, 260-269.	5.6	17
49	Inhibition of Notch Signaling in Human Embryonic Stem Cell–Derived Neural Stem Cells Delays G1/S Phase Transition and Accelerates Neuronal Differentiation ⟨i⟩In Vitro⟨/i⟩ and ⟨i⟩In Vivo⟨/i⟩. Stem Cells, 2010, 28, 955-964.	3.2	215
50	A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3225-3230.	7.1	456
51	Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurology, The, 2009, 8, 819-829.	10.2	97
52	The Death Receptor CD95 Activates Adult Neural Stem Cells for Working Memory Formation and Brain Repair. Cell Stem Cell, 2009, 5, 178-190.	11.1	120
53	p66ShcA adaptor molecule accelerates ES cell neural induction. Molecular and Cellular Neurosciences, 2009, 41, 74-84.	2.2	8
54	Lineage Selection of Functional and Cryopreservable Human Embryonic Stem Cell-Derived Neurons. Stem Cells, 2008, 26, 1705-1712.	3.2	37

Рнігірр Косн

#	Article	IF	CITATION
55	Nucleofection of Human Embryonic Stem Cells. Methods in Molecular Biology, 2008, 423, 131-138.	0.9	4
56	Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain, 2007, 130, 1276-1288.	7.6	151
57	Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nature Methods, 2006, 3, 461-467.	19.0	100
58	Transduction of human embryonic stem cells by ecotropic retroviral vectors. Nucleic Acids Research, 2006, 34, e120-e120.	14.5	25
59	Nucleofection of Human Embryonic Stem Cells. Stem Cells and Development, 2005, 14, 378-383.	2.1	89
60	Chronic Granulomatous Herpes Simplex Encephalitis in Children. Journal of Neuropathology and Experimental Neurology, 2004, 63, 1173-1181.	1.7	30
61	Tumor-derived mutations within the DNA-binding domain of p53 that phenotypically resemble the deletion of the proline-rich domain. Oncogene, 2000, 19, 1834-1842.	5.9	32