
Philipp Koch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8959079/publications.pdf Version: 2024-02-01

Ринор Коси

#	Article	IF	CITATIONS
1	A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3225-3230.	7.1	456
2	Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods, 2012, 9, 575-578.	19.0	288
3	Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature, 2011, 480, 543-546.	27.8	282
4	Human-Induced Pluripotent Stem Cells form Functional Neurons and Improve Recovery After Grafting in Stroke-Damaged Brain. Stem Cells, 2012, 30, 1120-1133.	3.2	264
5	Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons. PLoS ONE, 2012, 7, e29597.	2.5	254
6	Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain, 2013, 136, 3561-3577.	7.6	225
7	An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome. Cell Reports, 2017, 19, 50-59.	6.4	223
8	Inhibition of Notch Signaling in Human Embryonic Stem Cell–Derived Neural Stem Cells Delays G1/S Phase Transition and Accelerates Neuronal Differentiation <i>In Vitro</i> and <i>In Vivo</i> . Stem Cells, 2010, 28, 955-964.	3.2	215
9	Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nature Reviews Molecular Cell Biology, 2013, 14, 225-236.	37.0	200
10	Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain, 2007, 130, 1276-1288.	7.6	151
11	Anticancer Effects of Niclosamide in Human Glioblastoma. Clinical Cancer Research, 2013, 19, 4124-4136.	7.0	135
12	The Death Receptor CD95 Activates Adult Neural Stem Cells for Working Memory Formation and Brain Repair. Cell Stem Cell, 2009, 5, 178-190.	11.1	120
13	Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nature Biotechnology, 2019, 37, 1478-1481.	17.5	117
14	Presenilin-1 L166P Mutant Human Pluripotent Stem Cell–Derived Neurons Exhibit Partial Loss of γ-Secretase Activity in Endogenous Amyloid-β Generation. American Journal of Pathology, 2012, 180, 2404-2416.	3.8	104
15	Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nature Methods, 2006, 3, 461-467.	19.0	100
16	Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurology, The, 2009, 8, 819-829.	10.2	97
17	Nucleofection of Human Embryonic Stem Cells. Stem Cells and Development, 2005, 14, 378-383.	2.1	89
18	Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Reports, 2016, 14, 2127-2141.	6.4	87

Рнігірр Косн

#	Article	IF	CITATIONS
19	Phosphorylation of the amyloid β-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathologica, 2016, 131, 525-537.	7.7	84
20	A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathologica, 2011, 122, 637-650.	7.7	77
21	Targeting the Cytosolic Innate Immune Receptors RIG-I and MDA5 Effectively Counteracts Cancer Cell Heterogeneity in Glioblastoma. Stem Cells, 2013, 31, 1064-1074.	3.2	76
22	MicroRNA-Based Promotion of Human Neuronal Differentiation and Subtype Specification. PLoS ONE, 2013, 8, e59011.	2.5	73
23	Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restorative Neurology and Neuroscience, 2014, 32, 547-558.	0.7	60
24	APP Processing in Human Pluripotent Stem Cell-Derived Neurons Is Resistant to NSAID-Based Î ³ -Secretase Modulation. Stem Cell Reports, 2013, 1, 491-498.	4.8	58
25	<i>C9orf72</i> -derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. Science Advances, 2021, 7, .	10.3	57
26	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	11.1	56
27	Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain. Cellular and Molecular Life Sciences, 2012, 69, 461-470.	5.4	55
28	Optogenetics Reveal Delayed Afferent Synaptogenesis on Grafted Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors. Stem Cells, 2014, 32, 3088-3098.	3.2	49
29	Whole-brain 3D mapping of human neural transplant innervation. Nature Communications, 2017, 8, 14162.	12.8	46
30	Arylsulfatase A Overexpressing Human iPSC-derived Neural Cells Reduce CNS Sulfatide Storage in a Mouse Model of Metachromatic Leukodystrophy. Molecular Therapy, 2015, 23, 1519-1531.	8.2	44
31	The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides. Cell Reports, 2017, 19, 1967-1976.	6.4	40
32	DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clinical Epigenetics, 2018, 10, 13.	4.1	39
33	Automated Large-Scale Culture and Medium-Throughput Chemical Screen for Modulators of Proliferation and Viability of Human Induced Pluripotent Stem Cell–Derived Neuroepithelial-like Stem Cells. Journal of Biomolecular Screening, 2013, 18, 258-268.	2.6	38
34	Lineage Selection of Functional and Cryopreservable Human Embryonic Stem Cell-Derived Neurons. Stem Cells, 2008, 26, 1705-1712.	3.2	37
35	Embryonic Stem Cell–Based Modeling of Tau Pathology in Human Neurons. American Journal of Pathology, 2013, 182, 1769-1779.	3.8	35
36	Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nature Neuroscience, 2014, 17, 24-26.	14.8	35

Рнігірр Косн

#	Article	IF	CITATIONS
37	Tumor-derived mutations within the DNA-binding domain of p53 that phenotypically resemble the deletion of the proline-rich domain. Oncogene, 2000, 19, 1834-1842.	5.9	32
38	Chronic Granulomatous Herpes Simplex Encephalitis in Children. Journal of Neuropathology and Experimental Neurology, 2004, 63, 1173-1181.	1.7	30
39	Generation of Standardized and Reproducible Forebrain-type Cerebral Organoids from Human Induced Pluripotent Stem Cells. Journal of Visualized Experiments, 2018, , .	0.3	30
40	Transduction of human embryonic stem cells by ecotropic retroviral vectors. Nucleic Acids Research, 2006, 34, e120-e120.	14.5	25
41	Induction of Amyloid-β42 Production by Fipronil and Other Pyrazole Insecticides. Journal of Alzheimer's Disease, 2018, 62, 1663-1681.	2.6	23
42	Human cerebral organoids reveal progenitor pathology in EML1â€ŀinked cortical malformation. EMBO Reports, 2022, , e54027.	4.5	19
43	Laser-Assisted Photoablation of Human Pluripotent Stem Cells from Differentiating Cultures. Stem Cell Reviews and Reports, 2010, 6, 260-269.	5.6	17
44	Bivalent histone modifications in stem cells poise miRNA loci for CpG island hypermethylation in human cancer. Epigenetics, 2011, 6, 1344-1353.	2.7	16
45	Functional Neuronal Cells Generated by Human Parthenogenetic Stem Cells. PLoS ONE, 2012, 7, e42800.	2.5	14
46	Specific Triazine Herbicides Induce Amyloid-β42 Production. Journal of Alzheimer's Disease, 2016, 54, 1593-1605.	2.6	14
47	Cortical organoids: why all this hype?. Current Opinion in Genetics and Development, 2018, 52, 22-28.	3.3	13
48	In vitro segregation and isolation of human pluripotent stem cell-derived neural crest cells. Methods, 2018, 133, 65-80.	3.8	10
49	hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells, 2021, 10, 3292.	4.1	10
50	Drug discovery in psychopharmacology: from 2D models to cerebral organoids. Dialogues in Clinical Neuroscience, 2019, 21, 203-224.	3.7	9
51	p66ShcA adaptor molecule accelerates ES cell neural induction. Molecular and Cellular Neurosciences, 2009, 41, 74-84.	2.2	8
52	Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity. Stem Cells Translational Medicine, 2018, 7, 477-486.	3.3	8
53	MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility. Translational Oncology, 2017, 10, 70-79.	3.7	6
54	In Vitro Recapitulation of Developmental Transitions in Human Neural Stem Cells. Stem Cells, 2019, 37, 1429-1440.	3.2	6

Рніцірр Косн

#	Article	IF	CITATIONS
55	Cerebral organoids to unravel the mechanisms underlying malformations of human cortical development. Seminars in Cell and Developmental Biology, 2021, 111, 15-22.	5.0	5
56	Asymmetric Notch activity by differential inheritance of lysosomes in human neural stem cells. Science Advances, 2022, 8, eabl5792.	10.3	5
57	Nucleofection of Human Embryonic Stem Cells. Methods in Molecular Biology, 2008, 423, 131-138.	0.9	4
58	Direct Conversion Provides Old Neurons from Aged Donor's Skin. Cell Stem Cell, 2015, 17, 637-638.	11.1	3
59	Voltammetric Approach for Characterizing the Biophysical and Chemical Functionality of Human Induced Pluripotent Stem Cell-Derived Serotonin Neurons. Analytical Chemistry, 2022, 94, 8847-8856.	6.5	3
60	A Little Bit of Guidance: Mini Brains on Their Route to Adolescence. Cell Stem Cell, 2017, 21, 157-158.	11.1	1
61	Differentiation of Human Pluripotent Stem Cells into Neural Precursors. , 2012, , 375-384.		0