Brian A Pellerin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8958566/publications.pdf Version: 2024-02-01

RDIAN & DELLEDIN

#	Article	IF	CITATIONS
1	Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography, 2016, 61, 1015-1032.	1.6	622
2	The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1272-1285.	0.7	242
3	Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream. Biogeochemistry, 2012, 108, 183-198.	1.7	226
4	Diurnal variability in riverine dissolved organic matter composition determined by <i>in situ</i> optical measurement in the San Joaquin River (California, USA). Hydrological Processes, 2007, 21, 3181-3189.	1.1	156
5	Highâ€frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. Journal of Geophysical Research, 2009, 114, .	3.3	149
6	Seeing the light: The effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams. Limnology and Oceanography: Methods, 2012, 10, 767-775.	1.0	135
7	Emerging Tools for Continuous Nutrient Monitoring Networks: Sensors Advancing Science and Water Resources Protection. Journal of the American Water Resources Association, 2016, 52, 993-1008.	1.0	120
8	The application of electrical conductivity as a tracer for hydrograph separation in urban catchments. Hydrological Processes, 2008, 22, 1810-1818.	1.1	114
9	N Retention in Urbanizing Headwater Catchments. Ecosystems, 2005, 8, 871-884.	1.6	109
10	The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed. Geochimica Et Cosmochimica Acta, 2008, 72, 5266-5277.	1.6	109
11	Mississippi River Nitrate Loads from High Frequency Sensor Measurements and Regression-Based Load Estimation. Environmental Science & Technology, 2014, 48, 12612-12619.	4.6	98
12	Does Anthropogenic Nitrogen Enrichment Increase Organic Nitrogen Concentrations in Runoff from Forested and Human-dominated Watersheds?. Ecosystems, 2006, 9, 852-864.	1.6	90
13	Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an <i>in situ</i> optical nitrate sensor and dual nitrate isotopes. Freshwater Biology, 2009, 54, 376-387.	1.2	83
14	Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams. Limnology and Oceanography, 2004, 49, 910-918.	1.6	81
15	Monitoring the riverine pulse: Applying highâ€frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1348.	2.8	78
16	The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM). Marine Pollution Bulletin, 2016, 107, 518-527.	2.3	73
17	Quantifying watershedâ€scale groundwater loading and inâ€stream fate of nitrate using highâ€frequency water quality data. Water Resources Research, 2016, 52, 330-347.	1.7	63
18	Microbial Degradation of Plant Leachate Alters Lignin Phenols and Trihalomethane Precursors. Journal of Environmental Quality, 2010, 39, 946-954.	1.0	62

BRIAN A PELLERIN

#	Article	IF	CITATIONS
19	Determining Sources of Dissolved Organic Carbon and Disinfection Byproduct Precursors to the McKenzie River, Oregon. Journal of Environmental Quality, 2010, 39, 2100-2112.	1.0	45
20	The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed. Agriculture, Ecosystems and Environment, 2013, 179, 1-10.	2.5	44
21	From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed. Geomorphology, 2011, 132, 272-286.	1.1	43
22	Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 2011, 56, 1355-1371.	1.6	43
23	Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120408.	1.6	41
24	Temporal Variability in Nitrateâ€Discharge Relationships in Large Rivers as Revealed by Highâ€Frequency Data. Water Resources Research, 2019, 55, 973-989.	1.7	39
25	Clearing the waters: Evaluating the need for siteâ€specific field fluorescence corrections based on turbidity measurements. Limnology and Oceanography: Methods, 2017, 15, 408-416.	1.0	34
26	Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2634-2650.	1.3	32
27	Spatial and temporal patterns of dissolved organic matter quantity and quality in the Mississippi River Basin, 1997–2013. Hydrological Processes, 2017, 31, 902-915.	1.1	31
28	Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. Estuaries and Coasts, 2012, 35, 1036-1048.	1.0	25
29	DOM composition in an agricultural watershed: Assessing patterns and variability in the context of spatial scales. Geochimica Et Cosmochimica Acta, 2013, 121, 599-610.	1.6	23
30	Tapping Environmental History to Recreate America's Colonial Hydrology. Environmental Science & Technology, 2010, 44, 8798-8803.	4.6	16
31	High Frequency Data Exposes Nonlinear Seasonal Controls on Dissolved Organic Matter in a Large Watershed. Environmental Science & Technology, 2018, 52, 5644-5652.	4.6	15
32	Patterns of diel variation in nitrate concentrations in the Potomac River. Freshwater Science, 2016, 35, 1117-1132.	0.9	14
33	The Role of Snowmelt and Spring Rainfall in Inorganic Nutrient Fluxes from a Large Temperate Watershed, the Androscoggin River Basin (Maine and New Hampshire). Biogeochemistry, 2006, 80, 191-203.	1.7	12
34	Organic Matter Integration, Overprinting, and the Relative Fraction of Optically Active Organic Carbon in a Human-Impacted Watershed. Frontiers in Earth Science, 2020, 8, .	0.8	6
35	Optical Properties of Water for Prediction of Wastewater Contamination, Human-Associated Bacteria, and Fecal Indicator Bacteria in Surface Water at Three Watershed Scales. Environmental Science & Technology, 2021, 55, 13770-13782.	4.6	6
36	Irrigation as a fuel pump to freshwater ecosystems. Biogeochemistry, 2017, 136, 71-90.	1.7	5

#	Article	IF	CITATIONS
37	Trihalomethane precursors: Land use hot spots, persistence during transport, and management options. Science of the Total Environment, 2020, 742, 140571.	3.9	3
38	Coordinating standards and applications for optical water quality sensor networks. Eos, 2011, 92, 251-251.	0.1	0