List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering Reports, 2016, 104, 1-32.	14.8	582
2	A proposed model membrane and test method for microneedle insertion studies. International Journal of Pharmaceutics, 2014, 472, 65-73.	2.6	324
3	Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers, 2018, 10, 1379.	2.0	242
4	Hydrogel-Forming Microneedles Prepared from "Super Swelling―Polymers Combined with Lyophilised Wafers for Transdermal Drug Delivery. PLoS ONE, 2014, 9, e111547.	1.1	237
5	Microneedles: A New Frontier in Nanomedicine Delivery. Pharmaceutical Research, 2016, 33, 1055-1073.	1.7	237
6	Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydrate Polymers, 2018, 181, 1194-1205.	5.1	195
7	Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 2018, 9, 13.	1.8	193
8	Antioxidant PLA Composites Containing Lignin for 3D Printing Applications: A Potential Material for Healthcare Applications. Pharmaceutics, 2019, 11, 165.	2.0	186
9	Synthesis and Characterization of Lignin Hydrogels for Potential Applications as Drug Eluting Antimicrobial Coatings for Medical Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 9037-9046.	3.2	161
10	Zein-Based Nanoparticles Improve the Oral Bioavailability of Resveratrol and Its Anti-inflammatory Effects in a Mouse Model of Endotoxic Shock. Journal of Agricultural and Food Chemistry, 2015, 63, 5603-5611.	2.4	158
11	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	2.3	154
12	Successful application of large microneedle patches by human volunteers. International Journal of Pharmaceutics, 2017, 521, 92-101.	2.6	145
13	Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. Journal of Controlled Release, 2017, 265, 30-40.	4.8	138
14	Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. International Journal of Biological Macromolecules, 2020, 146, 290-298.	3.6	121
15	Increased Oral Bioavailability of Resveratrol by Its Encapsulation in Casein Nanoparticles. International Journal of Molecular Sciences, 2018, 19, 2816.	1.8	118
16	Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery. Molecular Pharmaceutics, 2016, 13, 907-914.	2.3	117
17	Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications. International Journal of Biological Macromolecules, 2020, 145, 92-99.	3.6	116
18	Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept. Journal of Controlled Release, 2017, 265, 93-101.	4.8	109

#	Article	IF	CITATIONS
19	Development of a Biodegradable Subcutaneous Implant for Prolonged Drug Delivery Using 3D Printing. Pharmaceutics, 2020, 12, 105.	2.0	109
20	Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Applied Sciences (Switzerland), 2020, 10, 65.	1.3	108
21	Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. International Journal of Pharmaceutics, 2020, 586, 119580.	2.6	101
22	Lignin-based hydrogels with "super-swelling―capacities for dye removal. International Journal of Biological Macromolecules, 2018, 115, 1249-1259.	3.6	99
23	3D Printing of Pharmaceuticals and Drug Delivery Devices. Pharmaceutics, 2020, 12, 266.	2.0	98
24	Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Delivery and Translational Research, 2015, 5, 313-331.	3.0	96
25	Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. Journal of Controlled Release, 2018, 292, 119-129.	4.8	96
26	3D Printing of Drug-Loaded Thermoplastic Polyurethane Meshes: A Potential Material for Soft Tissue Reinforcement in Vaginal Surgery. Pharmaceutics, 2020, 12, 63.	2.0	92
27	Additive Manufacturing Can Assist in the Fight Against COVID-19 and Other Pandemics and Impact on the Global Supply Chain. 3D Printing and Additive Manufacturing, 2020, 7, 100-103.	1.4	88
28	Nanosuspension-Based Dissolving Microneedle Arrays for Intradermal Delivery of Curcumin. Pharmaceutics, 2019, 11, 308.	2.0	87
29	Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 400-407.	2.0	82
30	Novel nanosuspensionâ€based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug. Journal of Interdisciplinary Nanomedicine, 2018, 3, 89-101.	3.6	80
31	A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. International Journal of Pharmaceutics, 2015, 494, 417-429.	2.6	75
32	Microwaveâ€Assisted Preparation of Hydrogelâ€Forming Microneedle Arrays for Transdermal Drug Delivery Applications. Macromolecular Materials and Engineering, 2015, 300, 586-595.	1.7	73
33	Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 294-312.	2.0	72
34	Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) – Pluronic® F127 copolymers for controlled protein release. International Journal of Pharmaceutics, 2014, 459, 1-9.	2.6	71
35	A facile system to evaluate in vitro drug release from dissolving microneedle arrays. International Journal of Pharmaceutics, 2016, 497, 62-69.	2.6	69
36	In vivo studies investigating biodistribution of nanoparticle-encapsulated rhodamine B delivered via dissolving microneedles. Journal of Controlled Release, 2017, 265, 57-65.	4.8	69

#	Article	IF	CITATIONS
37	Microarray patches: potentially useful delivery systems for long-acting nanosuspensions. Drug Discovery Today, 2018, 23, 1026-1033.	3.2	66
38	Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. International Journal of Pharmaceutics, 2018, 541, 56-63.	2.6	61
39	Fused Deposition Modeling as an Effective Tool for Anti-Infective Dialysis Catheter Fabrication. ACS Biomaterials Science and Engineering, 2019, 5, 6300-6310.	2.6	60
40	Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Molecular Pharmaceutics, 2020, 17, 3487-3500.	2.3	60
41	Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Delivery and Translational Research, 2020, 10, 690-705.	3.0	60
42	Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. International Journal of Pharmaceutics, 2019, 570, 118652.	2.6	58
43	Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: Potential for enhanced treatment of cutaneous fungal infections. Journal of Controlled Release, 2021, 339, 361-380.	4.8	52
44	The Role of 3D Printing Technology in Microengineering of Microneedles. Small, 2022, 18, e2106392.	5.2	50
45	Phase Behavior of Reverse Poloxamers and Poloxamines in Water. Langmuir, 2013, 29, 1045-1053.	1.6	49
46	Enhancing intradermal delivery of tofacitinib citrate: Comparison between powder-loaded hollow microneedle arrays and dissolving microneedle arrays. International Journal of Pharmaceutics, 2021, 593, 120152.	2.6	48
47	Fused deposition modelling for the development of drug loaded cardiovascular prosthesis. International Journal of Pharmaceutics, 2021, 595, 120243.	2.6	47
48	Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants. Materials Science and Engineering C, 2021, 127, 112226.	3.8	45
49	Self-Assembled Supramolecular Gels of Reverse Poloxamers and Cyclodextrins. Langmuir, 2012, 28, 12457-12462.	1.6	44
50	Non-covalent hydrogels of cyclodextrins and poloxamines for the controlled release of proteins. Carbohydrate Polymers, 2014, 102, 674-681.	5.1	42
51	A Novel Transdermal Protein Delivery Strategy via Electrohydrodynamic Coating of PLGA Microparticles onto Microneedles. ACS Applied Materials & Interfaces, 2020, 12, 12478-12488.	4.0	42
52	3D printed estradiol-eluting urogynecological mesh implants: Influence of material and mesh geometry on their mechanical properties. International Journal of Pharmaceutics, 2021, 593, 120145.	2.6	42
53	Hydrogels based on poly(methyl vinyl ether-co-maleic acid) and Tween 85 for sustained delivery of hydrophobic drugs. International Journal of Pharmaceutics, 2018, 538, 147-158.	2.6	40
54	Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Biomolecules, 2019, 9, 423.	1.8	39

#	Article	IF	CITATIONS
55	Design, Formulation, and Evaluation of Novel Dissolving Microarray Patches Containing Rilpivirine for Intravaginal Delivery. Advanced Healthcare Materials, 2019, 8, e1801510.	3.9	39
56	Lignin for pharmaceutical and biomedical applications – Could this become a reality?. Sustainable Chemistry and Pharmacy, 2020, 18, 100320.	1.6	37
57	Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. Materials Science and Engineering C, 2021, 129, 112375.	3.8	37
58	The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis. Advanced Drug Delivery Reviews, 2021, 175, 113825.	6.6	36
59	In Vitro Release from Reverse Poloxamine/α-Cyclodextrin Matrices: Modelling and Comparison of Dissolution Profiles. Journal of Pharmaceutical Sciences, 2014, 103, 197-206.	1.6	35
60	Modelling the intradermal delivery of microneedle array patches for long-acting antiretrovirals using PBPK. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 101-109.	2.0	35
61	Design and characterisation of a dissolving microneedle patch for intradermal vaccination with heat-inactivated bacteria: A proof of concept study. International Journal of Pharmaceutics, 2018, 549, 87-95.	2.6	32
62	Fused Deposition Modelling as a Potential Tool for Antimicrobial Dialysis Catheters Manufacturing: New Trends vs. Conventional Approaches. Coatings, 2019, 9, 515.	1.2	31
63	Design and Development of Liquid Drug Reservoirs for Microneedle Delivery of Poorly Soluble Drug Molecules. Pharmaceutics, 2019, 11, 605.	2.0	31
64	Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel low molecular weight biotherapeutics. Journal of Materials Chemistry B, 2020, 8, 4202-4209.	2.9	30
65	Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1690.	3.3	29
66	Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches. International Journal of Pharmaceutics, 2020, 585, 119512.	2.6	25
67	Use of 3D Printing for the Development of Biodegradable Antiplatelet Materials for Cardiovascular Applications. Pharmaceuticals, 2021, 14, 921.	1.7	25
68	3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Delivery, 2022, 29, 1038-1048.	2.5	25
69	TPU-based antiplatelet cardiovascular prostheses prepared using fused deposition modelling. Materials and Design, 2022, 220, 110837.	3.3	25
70	Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine. International Journal of Pharmaceutics, 2021, 607, 121011.	2.6	24
71	Slowly dissolving intradermal microneedles. Nature Biomedical Engineering, 2019, 3, 169-170.	11.6	23
72	3D-printed reservoir-type implants containing poly(lactic acid)/poly(caprolactone) porous membranes for sustained drug delivery. , 2022, 139, 213024.		20

#	Article	IF	CITATIONS
73	Pegylated poly(anhydride) nanoparticles for oral delivery of docetaxel. European Journal of Pharmaceutical Sciences, 2018, 118, 165-175.	1.9	18
74	Dissolving microneedles: safety considerations and future perspectives. Therapeutic Delivery, 2016, 7, 283-285.	1.2	17
75	Nanoparticles from Gantrez® AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel. International Journal of Pharmaceutics, 2019, 571, 118699.	2.6	15
76	Understanding the basis of transcutaneous vaccine delivery. Therapeutic Delivery, 2019, 10, 63-80.	1.2	15
77	Dissolving Microneedles for Intradermal Vaccination against Shigellosis. Vaccines, 2019, 7, 159.	2.1	14
78	Poly(methyl vinyl ether-co-maleic acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems. Macromolecular Research, 2019, 27, 396-403.	1.0	14
79	Potential of Polymeric Films Loaded with Gold Nanorods for Local Hyperthermia Applications. Nanomaterials, 2020, 10, 582.	1.9	13
80	Nanotechnologies for tissue engineering and regeneration. , 2018, , 93-206.		12
81	Plasmonic photothermal microneedle arrays and single needles for minimally-invasive deep in-skin hyperthermia. Journal of Materials Chemistry B, 2020, 8, 5425-5433.	2.9	12
82	HPLC method for levothyroxine quantification in long-acting drug delivery systems. Validation and evaluation of bovine serum albumin as levothyroxine stabilizer. Journal of Pharmaceutical and Biomedical Analysis, 2021, 203, 114182.	1.4	11
83	Super-swelling hydrogel-forming microneedle based transdermal drug delivery: Mathematical modelling, simulation and experimental validation. International Journal of Pharmaceutics, 2022, 622, 121835.	2.6	11
84	Inclusion Complexes of Rifampicin with Native and Derivatized Cyclodextrins: In Silico Modeling, Formulation, and Characterization. Pharmaceuticals, 2022, 15, 20.	1.7	10
85	Antimicrobial 3D Printed Objects in the Fight Against Pandemics. 3D Printing and Additive Manufacturing, 2021, 8, 79-86.	1.4	9
86	A New and Sensitive HPLC-UV Method for Rapid and Simultaneous Quantification of Curcumin and D-Panthenol: Application to In Vitro Release Studies of Wound Dressings. Molecules, 2022, 27, 1759.	1.7	9
87	Incorporating Stories of Sedatives, Spoiled Sweet Clover Hay, and Plants from the Amazon Rainforest into a Pharmaceutical Chemistry Course To Engage Students and Introduce Drug Design Strategies. Journal of Chemical Education, 2018, 95, 1778-1786.	1.1	7
88	Coated polymeric needles for rapid and deep intradermal delivery. International Journal of Pharmaceutics: X, 2020, 2, 100048.	1.2	6
89	Development and validation of a high-performance liquid chromatography method for levothyroxine sodium quantification in plasma for pre-clinical evaluation of long-acting drug delivery systems. Analytical Methods, 2021, 13, 5204-5210.	1.3	6
90	Release of β-galactosidase from poloxamine/α-cyclodextrin hydrogels. Beilstein Journal of Organic Chemistry, 2014, 10, 3127-3135.	1.3	5

#	Article	IF	CITATIONS
91	Overview of the clinical current needs and potential applications for long-acting and implantable delivery systems. , 2022, , 1-16.		5
92	Immune Response after Skin Delivery of a Recombinant Heat-Labile Enterotoxin B Subunit of Enterotoxigenic Escherichia coli in Mice. Pharmaceutics, 2022, 14, 239.	2.0	5
93	How innovative drug delivery devices can help realize clinical utility of new effective therapies. Expert Opinion on Drug Delivery, 2019, 16, 1277-1281.	2.4	3
94	Designing a unique feedback mechanism for hydrogel-forming microneedle array patches: a concept study. Drug Delivery and Translational Research, 2022, 12, 838-850.	3.0	3
95	Classification, material types, and design approaches of long-acting and implantable drug delivery systems. , 2022, , 17-59.		3
96	Fabrication of lignin-based hydrogels and their applications. , 2021, , 371-394.		1
97	Implantable and long-lasting drug delivery systems for infectious, inflammatory, endocrine, and neurodegenerative diseases. , 2022, , 223-248.		1
98	Exemplar Case Studies Demonstrating Why Future Pharmacists Need to Learn Medicinal and Analytical Chemistry. Journal of Chemical Education, 0, , .	1.1	0