Manuel A Azenha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957115/publications.pdf

Version: 2024-02-01

279798 315739 1,522 59 23 38 citations h-index g-index papers 59 59 59 1848 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Early Activation of Antioxidant Responses in Ni-Stressed Tomato Cultivars Determines Their Resilience Under Co-exposure to Drought. Journal of Plant Growth Regulation, 2023, 42, 877-891.	5.1	7
2	The potential of beach wrack as plant biostimulant to mitigate metal toxicity: mineral composition, antioxidant properties and effects against Cu-induced stress. Journal of Applied Phycology, 2022, 34, 667-678.	2.8	1
3	Wrack Composed by Fucus spp, Ascophyllum nodosum and Pelvetia canaliculata Limits Metal Uptake and Restores the Redox Homeostasis of Barley Plants Grown in Cu-Contaminated Soils. Journal of Plant Growth Regulation, 2022, 41, 3544-3555.	5.1	4
4	Impact of Combined Heat and Salt Stresses on Tomato Plantsâ€"Insights into Nutrient Uptake and Redox Homeostasis. Antioxidants, 2022, 11, 478.	5.1	16
5	Preparation of molecularly imprinted hollow TiO2 microspheres for selective photocatalysis. Chemical Engineering Journal Advances, 2021, 5, 100071.	5.2	15
6	Latest developments on TiO2-based photocatalysis: a special focus on selectivity and hollowness for enhanced photonic efficiency. Applied Catalysis A: General, 2021, 623, 118243.	4.3	19
7	Specific glutathione-S-transferases ensure an efficient detoxification of diclofenac in Solanum lycopersicum L. plants. Plant Physiology and Biochemistry, 2021, 168, 263-271.	5.8	8
8	Label-Free Anti-Human IgG Biosensor Based on Chemical Modification of a Long Period Fiber Grating Surface. , $2021, 5, \ldots$		0
9	Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential. Chemosphere, 2020, 244, 125579.	8.2	10
10	Cationâ€bioimprinted mesoporous polysaccharide/sol–gel composites prepared in media containing choline chlorideâ€based deep eutectic solvents. Journal of Applied Polymer Science, 2020, 137, 48842.	2.6	4
11	Exploration of the reactive modelling of sol–gel polycondensation in the presence of templates. Soft Matter, 2019, 15, 5770-5778.	2.7	1
12	Development of mesoporous polysaccharide/sol-gel composites with two different templating agents: Surfactants and choline chloride-based deep eutectic solvents. EXPRESS Polymer Letters, 2019, 13, 261-275.	2.1	7
13	SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Science of the Total Environment, 2018, 622-623, 517-525.	8.0	60
14	Cationic imprinting of Pb(II) within composite networks based on bovine or fish chondroitin sulfate. Journal of Molecular Recognition, 2018, 31, e2614.	2.1	8
15	Differential effects of acetophenone on shoots' and roots' metabolism of Solanum nigrum L. plants and implications in its phytoremediation. Plant Physiology and Biochemistry, 2018, 130, 391-398.	5.8	6
16	Preparation and evaluation of Pb(II)-imprinted fucoidan-based sorbents. Reactive and Functional Polymers, 2017, 115, 53-62.	4.1	7
17	An efficient antioxidant system and heavy metal exclusion from leaves make <i>Solanum cheesmaniae</i> more tolerant to Cu than its cultivated counterpart. Food and Energy Security, 2017, 6, 123-133.	4.3	43
18	Metalaxyl Effects on Antioxidant Defenses in Leaves and Roots of Solanum nigrum L Frontiers in Plant Science, 2017, 8, 1967.	3.6	31

#	Article	IF	Citations
19	Acylated-naproxen as the surface-active template in the preparation of micro- and nanospherical imprinted xerogels by emulsion techniques. Journal of Chromatography A, 2016, 1437, 107-115.	3.7	3
20	Metal cation sorption ability of immobilized and reticulated chondroitin sulfate or fucoidan through a sol-gel crosslinking scheme. Materials Today Communications, 2016, 8, 172-182.	1.9	12
21	Measurement artifacts identified in the UV–vis spectroscopic study of adduct formation within the context of molecular imprinting of naproxen. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 661-668.	3.9	13
22	Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environmental and Experimental Botany, 2016, 122, 115-125.	4.2	175
23	Molecular Dynamics Simulations and Comparison of Two New and High Selective Imprinted Xerogels. , 2016, , 339-361.		0
24	Influence of pH, concentration and ionic strength during batch and flow-through continuous stirred reactor experiments of Sr2+-adsorption onto montmorillonite. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 2243.	1.5	4
25	Naproxen-imprinted xerogels in the micro- and nanospherical forms by emulsion technique. Journal of Chromatography A, 2015, 1422, 43-52.	3.7	3
26	Aminoglutethimide-imprinted xerogels in bulk and spherical formats, based on a multifunctional organo-alkoxysilane precursor. Journal of Chromatography A, 2015, 1424, 59-68.	3.7	2
27	Molecularly Imprinted Sol-Gel Materials for Medical Applications. Current Topics in Medicinal Chemistry, 2015, 15, 199-222.	2.1	5
28	Molecular Dynamics Simulations of Complex Mixtures Aimed at the Preparation of Naproxen-Imprinted Xerogels. Journal of Chemical Information and Modeling, 2014, 54, 3330-3343.	5.4	6
29	Recognitive nano-thin-film composite beads for the enantiomeric resolution of the metastatic breast cancer drug aminoglutethimide. Journal of Chromatography A, 2014, 1358, 93-101.	3.7	11
30	Chromatographycally efficient microspherical composites of molecularly imprinted xerogels deposited inside mesoporous silica. Journal of Chromatography A, 2014, 1355, 158-163.	3.7	10
31	Imidazolium-based functional monomers for the imprinting of the anti-inflammatory drug naproxen: Comparison of acrylic and sol–gel approaches. Journal of Chromatography A, 2013, 1314, 115-123.	3.7	26
32	Synthesis of glycylglycine-imprinted silica microspheres through different water-in-oil emulsion techniques. Journal of Chromatography A, 2013, 1297, 138-145.	3.7	9
33	Vapor-phase testing of the memory-effects in benzene- and toluene-imprinted polymers conditioned at elevated temperature. Analytica Chimica Acta, 2013, 802, 40-45.	5.4	6
34	Computational and Experimental Study of the Effect of PEG in the Preparation of Damascenone-Imprinted Xerogels. Langmuir, 2013, 29, 2024-2032.	3.5	9
35	Metalaxyl-induced changes in the antioxidant metabolism of Solanum nigrum L. suspension cells. Pesticide Biochemistry and Physiology, 2013, 107, 235-243.	3.6	25
36	Copperâ€induced stress in <i><scp>S</scp>olanum nigrum</i> L. and antioxidant defense system responses. Food and Energy Security, 2013, 2, 70-80.	4.3	105

#	Article	IF	CITATIONS
37	Photo-Fenton plus Solanum nigrum L. weed plants integrated process for the abatement of highly concentrated metalaxyl on waste waters. Chemical Engineering Journal, 2012, 184, 213-220.	12.7	15
38	Molecular Dynamics Simulations of Pregelification Mixtures for the Production of Imprinted Xerogels. Langmuir, 2011, 27, 5062-5070.	3.5	14
39	Solanum nigrum L. weed plants as a remediation tool for metalaxyl-polluted effluents and soils. Chemosphere, 2011, 85, 744-750.	8.2	25
40	Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction. Journal of Chromatography A, 2010, 1217, 2758-2767.	3.7	54
41	Solid-phase microextraction Ni–Ti fibers coated with functionalised silica particles immobilized in a sol–gel matrix. Journal of Chromatography A, 2009, 1216, 2302-2306.	3.7	34
42	An improved bonded-polydimethylsiloxane solid-phase microextraction fiber obtained by a sol–gel/silica particle blend. Analytica Chimica Acta, 2008, 610, 205-210.	5.4	25
43	The requisite level of theory for the computational design of molecularly imprinted silica xerogels. Biosensors and Bioelectronics, 2008, 23, 1843-1849.	10.1	52
44	Estimate of the digestibility, assimilability and intestinal permeability of butyltins occurring in wine. Food and Chemical Toxicology, 2008, 46, 767-773.	3.6	7
45	Unbreakable Solid-Phase Microextraction Fibers Obtained by Solâ^'Gel Deposition on Titanium Wire. Analytical Chemistry, 2006, 78, 2071-2074.	6.5	115
46	Optimization of supercritical fluid extraction of pesticide residues in soil by means of central composite design and analysis by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 2006, 1110, 6-14.	3.7	92
47	Ultrathin phenyl-functionalized solid phase microextraction fiber coating developed by sol–gel deposition. Journal of Chromatography A, 2005, 1069, 163-172.	3.7	40
48	Estimation of the human intestinal permeability of butyltin species using the Caco-2 cell line model. Food and Chemical Toxicology, 2004, 42, 1431-1442.	3.6	16
49	Butyltin Compounds in Portuguese Wines. Journal of Agricultural and Food Chemistry, 2002, 50, 2713-2716.	5.2	39
50	Headspace solid-phase micro-extraction gas chromatography–mass detection method for the determination of butyltin compounds in wines. Analytica Chimica Acta, 2002, 458, 231-239.	5.4	38
51	The influence of Cu concentration on ethanolic fermentation by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2000, 90, 163-167.	2.2	29
52	Assessment of the Pb and Cu in vitro availability in wines by means of speciation procedures. Food and Chemical Toxicology, 2000, 38, 899-912.	3.6	44
53	Electrochemical studies of complexation of Pb in red wines. Analyst, The, 2000, 125, 743-748.	3.5	16
54	Pb and Cu Speciation and Bioavailability in Port Wine. Journal of Agricultural and Food Chemistry, 2000, 48, 5740-5749.	5.2	22

#	ARTICLE	IF	CITATIONS
55	The Influence of Cu Concentration on Ethanolic Fermentation by Saccharomyces cerevisiae Journal of Bioscience and Bioengineering, 2000, 90, 163-167.	2.2	3
56	Role of Polyphenols in Copper Complexation in Red Wines. Journal of Agricultural and Food Chemistry, 1999, 47, 2791-2796.	5.2	65
57	Copper(II) Complexation Properties and Surfactant Activity of 3-[N,N-Bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic Acid andN-(2-Hydroxyethyl)piperazine-N′-2-hydroxypropanesulfonic Acid pH Buffers Which May Affect Trace Metal Speciation inin VitroStudies. Analytical Biochemistry, 1998, 265, 193-201.	2.4	29
58	Electrochemical Evidence of Surfactant Activity of the Hepes pH Buffer Which May Have Implications on Trace Metal Availability to Culturesin Vitro. Analytical Biochemistry, 1996, 241, 248-253.	2.4	37
59	Organic ligands reduce copper toxicity in <i>Pseudomonas syringae</i> . Environmental Toxicology and Chemistry, 1995, 14, 369-373.	4.3	40