Huei-Ju Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957033/publications.pdf

Version: 2024-02-01

36 papers	1,573 citations	20 h-index	35 g-index
38	38	38	2282
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-Î ² -glucoside by Bacillus glycosyltransferases. Journal of Bioscience and Bioengineering, 2021, 131, 176-182.	2.2	10
2	Production of a new triterpenoid disaccharide saponin from sequential glycosylation of ganoderic acid A by 2 <i>Bacillus</i> glycosyltransferases. Bioscience, Biotechnology and Biochemistry, 2021, 85, 687-690.	1.3	3
3	One-Pot Bi-Enzymatic Cascade Synthesis of Novel Ganoderma Triterpenoid Saponins. Catalysts, 2021, 11, 580.	3.5	5
4	Improving Aqueous Solubility of Natural Antioxidant Mangiferin through Glycosylation by Maltogenic Amylase from Parageobacillus galactosidasius DSM 18751. Antioxidants, 2021, 10, 1817.	5.1	8
5	Active vitamin D induces gene-specific hypomethylation in prostate cancer cells developing vitamin D resistance. American Journal of Physiology - Cell Physiology, 2020, 318, C836-C847.	4.6	8
6	Modulation of the mRNA-binding protein HuR as a novel reversal mechanism of epirubicin-triggered multidrug resistance in colorectal cancer cells. PLoS ONE, 2017, 12, e0185625.	2.5	36
7	Characterization of a novel androgen receptor (AR) coregulator RIPK1 and related chemicals that suppress AR-mediated prostate cancer growth via peptide and chemical screening. Oncotarget, 2017, 8, 69508-69519.	1.8	4
8	Vitamin D receptor-binding site variants affect prostate cancer progression. Oncotarget, 2017, 8, 74119-74128.	1.8	9
9	Identification of a new androgen receptor (AR) coâ€regulator BUD31 and related peptides to suppress wildâ€type and mutated ARâ€raediated prostate cancer growth via peptide screening and Xâ€ray structure analysis. Molecular Oncology, 2014, 8, 1575-1587.	4.6	51
10	Bladder Cancer Exosomes Contain EDIL-3/Del1 and Facilitate Cancer Progression. Journal of Urology, 2014, 192, 583-592.	0.4	162
11	Identification of microRNA-98 as a Therapeutic Target Inhibiting Prostate Cancer Growth and a Biomarker Induced by Vitamin D. Journal of Biological Chemistry, 2013, 288, 1-9.	3.4	90
12	A Positive Feedback Signaling Loop between ATM and the Vitamin D Receptor Is Critical for Cancer Chemoprevention by Vitamin D. Cancer Research, 2012, 72, 958-968.	0.9	51
13	Vitamin D and Oxidative Stress. Oxidative Stress and Disease, 2012, , 131-150.	0.3	3
14	Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation. Cellular and Molecular Biology Letters, 2012, 17, 309-22.	7.0	17
15	Suppression of Prostate Cancer Cell Rolling and Adhesion to Endothelium by 1α,25-Dihydroxyvitamin D3. American Journal of Pathology, 2011, 178, 872-880.	3.8	50
16	The roles of testicular nuclear receptor 4 (TR4) in male fertility-priapism and sexual behavior defects in TR4 knockout mice. Reproductive Biology and Endocrinology, 2011, 9, 138.	3.3	11
17	Testicular Nuclear Receptor 4 (TR4) Regulates UV Light-induced Responses via Cockayne Syndrome B Protein-mediated Transcription-coupled DNA Repair. Journal of Biological Chemistry, 2011, 286, 38103-38108.	3.4	11
18	Premature aging with impaired oxidative stress defense in mice lacking TR4. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E91-E98.	3.5	31

#	Article	IF	CITATIONS
19	Down-regulation of NF- $\hat{\mathbb{P}}$ B signals is involved in loss of $\hat{\mathbb{P}}$ 1,25-dihydroxyvitamin D3 responsiveness. Journal of Steroid Biochemistry and Molecular Biology, 2010, 120, 11-21.	2.5	12
20	Protective role of 1α, 25â€dihydroxyvitamin D ₃ against oxidative stress in nonmalignant human prostate epithelial cells. International Journal of Cancer, 2008, 122, 2699-2706.	5.1	145
21	Actin associated proteins function as androgen receptor coregulators: An implication of androgen receptor's roles in skeletal muscle. Journal of Steroid Biochemistry and Molecular Biology, 2008, 111, 157-163.	2.5	20
22	Increased Expression of Corepressors in Aggressive Androgen-Independent Prostate Cancer Cells Results in Loss of $1\hat{l}\pm$,25-Dihydroxyvitamin D3 Responsiveness. Molecular Cancer Research, 2007, 5, 967-980.	3.4	36
23	Docetaxel-induced growth inhibition and apoptosis in androgen independent prostate cancer cells are enhanced by $1\hat{1}_{\pm}$,25-dihydroxyvitamin D3. Cancer Letters, 2007, 247, 122-129.	7.2	36
24	VITAMIN D AND PROSTATE CANCER., 2005,, 277-291.		0
25	Androgen-Receptor Coregulators Mediate the Suppressive Effect of Androgen Signals on Vitamin D Receptor Activity. Endocrine, 2005, 26, 001-010.	2.2	36
26	Androgen Receptor (AR) NH2- and COOH-Terminal Interactions Result in the Differential Influences on the AR-Mediated Transactivation and Cell Growth. Molecular Endocrinology, 2005, 19, 350-361.	3.7	62
27	Functional Domain and Motif Analyses of Androgen Receptor Coregulator ARA70 and Its Differential Expression in Prostate Cancer. Journal of Biological Chemistry, 2004, 279, 33438-33446.	3.4	82
28	Androgen signaling is required for the vitamin D-mediated growth inhibition in human prostate cancer cells. Oncogene, 2004, 23, 3350-3360.	5 . 9	60
29	Androgen Receptor Regulates Expression of Skeletal Muscle–Specific Proteins and Muscle Cell Types. Endocrine, 2004, 25, 27-32.	2.2	50
30	Actin monomer enhances supervillin-modulated androgen receptor transactivation. Biochemical and Biophysical Research Communications, 2004, 319, 393-393.	2.1	0
31	Actin monomer enhances supervillin-modulated androgen receptor transactivation. Biochemical and Biophysical Research Communications, 2004, 319, 393-396.	2.1	16
32	The Use of Phage Display Technique for the Isolation of Androgen Receptor Interacting Peptides with (F/W)XXL(F/W) and FXXLY New Signature Motifs. Journal of Biological Chemistry, 2003, 278, 23691-23698.	3.4	75
33	Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Research, 2003, 63, 4888-94.	0.9	95
34	Supervillin associates with androgen receptor and modulates its transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 661-666.	7.1	99
35	Identification of ARA70 as a Ligand-enhanced Coactivator for the Peroxisome Proliferator-activated Receptor \hat{I}^3 . Journal of Biological Chemistry, 1999, 274, 16147-16152.	3.4	120
36	Differential Induction of Androgen Receptor Transactivation by Different Androgen Receptor Coactivators in Human Prostate Cancer DU145 Cells. Endocrine, 1999, 11, 195-202.	2.2	68