
## Jonathan Yeow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957000/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Potent Virustatic Polymer–Lipid Nanomimics Block Viral Entry and Inhibit Malaria Parasites In Vivo.<br>ACS Central Science, 2022, 8, 1238-1257.                                                                             | 11.3 | 9         |
| 2  | Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. Journal of Controlled Release, 2021, 338, 201-210.                                                                                          | 9.9  | 53        |
| 3  | Gradient Polymerization–Induced Selfâ€Assembly: A Oneâ€6tep Approach. Macromolecular Rapid<br>Communications, 2020, 41, e1900493.                                                                                           | 3.9  | 23        |
| 4  | Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and<br>Structure on Inhibition of a <i>Pseudomonas</i> Biofilm. ACS Applied Materials & Interfaces, 2020,<br>12, 55243-55254. | 8.0  | 42        |
| 5  | An improved synthesis of poly(amidoamine)s for complexation with self-amplifying RNA and effective transfection. Polymer Chemistry, 2020, 11, 5861-5869.                                                                    | 3.9  | 8         |
| 6  | Big Is Beautiful: Enhanced saRNA Delivery and Immunogenicity by a Higher Molecular Weight,<br>Bioreducible, Cationic Polymer. ACS Nano, 2020, 14, 5711-5727.                                                                | 14.6 | 92        |
| 7  | Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angewandte Chemie -<br>International Edition, 2019, 58, 5170-5189.                                                                             | 13.8 | 444       |
| 8  | Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angewandte Chemie, 2019, 131, 5224-5243.                                                                                                       | 2.0  | 108       |
| 9  | Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 1029-1054.                                                                                                                             | 4.8  | 423       |
| 10 | A cocktail of vitamins for aqueous RAFT polymerization in an open-to-air microtiter plate. Polymer<br>Chemistry, 2019, 10, 4643-4654.                                                                                       | 3.9  | 47        |
| 11 | Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polymer Chemistry, 2019, 10, 2406-2414.                                                                                                        | 3.9  | 51        |
| 12 | A Selfâ€Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT<br>Polymerization. Angewandte Chemie - International Edition, 2018, 57, 10102-10106.                                             | 13.8 | 59        |
| 13 | An Oxygenâ€Tolerant PETâ€RAFT Polymerization for Screening Structure–Activity Relationships.<br>Angewandte Chemie, 2018, 130, 1573-1578.                                                                                    | 2.0  | 32        |
| 14 | An Oxygenâ€Tolerant PETâ€RAFT Polymerization for Screening Structure–Activity Relationships.<br>Angewandte Chemie - International Edition, 2018, 57, 1557-1562.                                                             | 13.8 | 163       |
| 15 | Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chemical Society Reviews, 2018, 47, 4357-4387.                                                                                                 | 38.1 | 313       |
| 16 | The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers. Polymer Chemistry, 2018, 9, 1735-1744.                                              | 3.9  | 64        |
| 17 | A Selfâ€Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT<br>Polymerization. Angewandte Chemie, 2018, 130, 10259-10263.                                                                    | 2.0  | 11        |
| 18 | Exploiting Wavelength Orthogonality for Successive Photoinduced Polymerization-Induced<br>Self-Assembly and Photo-Crosslinking. ACS Macro Letters, 2018, 7, 1376-1382.                                                      | 4.8  | 91        |

Jonathan Yeow

| #  | Article                                                                                                                                                                                                      | IF                | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 19 | Pushing the Limits of High Throughput PET-RAFT Polymerization. Macromolecules, 2018, 51, 7600-7607.                                                                                                          | 4.8               | 90                 |
| 20 | Visible Light-Mediated Polymerization-Induced Self-Assembly Using Continuous Flow Reactors.<br>Macromolecules, 2018, 51, 5165-5172.                                                                          | 4.8               | 105                |
| 21 | Copolymers with Controlled Molecular Weight Distributions and Compositional Gradients through<br>Flow Polymerization. Macromolecules, 2018, 51, 4553-4563.                                                   | 4.8               | 104                |
| 22 | Oxygen tolerant photopolymerization for ultralow volumes. Polymer Chemistry, 2017, 8, 5012-5022.                                                                                                             | 3.9               | 187                |
| 23 | Application of oxygen tolerant PET-RAFT to polymerization-induced self-assembly. Polymer Chemistry, 2017, 8, 2841-2851.                                                                                      | 3.9               | 142                |
| 24 | Photoinitiated Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA): New Insights and Opportunities.<br>Advanced Science, 2017, 4, 1700137.                                                                  | 11.2              | 305                |
| 25 | 2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and<br>Polymerization-Induced Self-Assembly in the Presence of Air. ACS Macro Letters, 2017, 6, 1237-1244.                  | 4.8               | 101                |
| 26 | Biofilm dispersal using nitric oxide loaded nanoparticles fabricated by photo-PISA: influence of morphology. Chemical Communications, 2017, 53, 12894-12897.                                                 | 4.1               | 45                 |
| 27 | Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 2017, 12, 81-89.                                              | 31.5              | 295                |
| 28 | Macromol. Rapid Commun. 11/2016. Macromolecular Rapid Communications, 2016, 37, 940-940.                                                                                                                     | 3.9               | 0                  |
| 29 | Polymerization of a Photocleavable Monomer Using Visible Light. Macromolecular Rapid<br>Communications, 2016, 37, 905-910.                                                                                   | 3.9               | 50                 |
| 30 | Visible Light-Mediated Polymerization-Induced Self-Assembly in the Absence of External Catalyst or<br>Initiator. ACS Macro Letters, 2016, 5, 558-564.                                                        | 4.8               | 188                |
| 31 | A Polymerization-Induced Self-Assembly Approach to Nanoparticles Loaded with Singlet Oxygen<br>Generators. Macromolecules, 2016, 49, 7277-7285.                                                              | 4.8               | 135                |
| 32 | Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using<br>Photoredox Catalyst. Journal of Visualized Experiments, 2016, , .                                        | 0.3               | 2                  |
| 33 | Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0)) Tj ETQq1<br>1803-1949.                                                                                    | 1 0.78431<br>47.7 | 4 rgBT /Ove<br>405 |
| 34 | Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron<br>Transfer–Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters, 2015,<br>4, 984-990. | 4.8               | 235                |
| 35 | A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes. Chemical<br>Communications, 2014, 50, 8181-8184.                                                                  | 4.1               | 32                 |
| 36 | An Efficient and Highly Versatile Synthetic Route to Prepare Iron Oxide Nanoparticles/Nanocomposites<br>with Tunable Morphologies. Langmuir, 2014, 30, 10493-10502.                                          | 3.5               | 81                 |