Jonathan Yeow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957000/publications.pdf

Version: 2024-02-01

172457 345221 4,538 36 29 36 citations h-index g-index papers 37 37 37 3648 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angewandte Chemie - International Edition, 2019, 58, 5170-5189.	13.8	444
2	Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 1029-1054.	4.8	423
3	Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0)) Tj ETQq1 1 1803-1949.		rgBT /Ov <mark>erla</mark> 405
4	Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chemical Society Reviews, 2018, 47, 4357-4387.	38.1	313
5	Photoinitiated Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA): New Insights and Opportunities. Advanced Science, 2017, 4, 1700137.	11.2	305
6	Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 2017, 12, 81-89.	31.5	295
7	Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer–Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters, 2015, 4, 984-990.	4.8	235
8	Visible Light-Mediated Polymerization-Induced Self-Assembly in the Absence of External Catalyst or Initiator. ACS Macro Letters, 2016, 5, 558-564.	4.8	188
9	Oxygen tolerant photopolymerization for ultralow volumes. Polymer Chemistry, 2017, 8, 5012-5022.	3.9	187
10	An Oxygenâ€Tolerant PETâ€RAFT Polymerization for Screening Structure–Activity Relationships. Angewandte Chemie - International Edition, 2018, 57, 1557-1562.	13.8	163
11	Application of oxygen tolerant PET-RAFT to polymerization-induced self-assembly. Polymer Chemistry, 2017, 8, 2841-2851.	3.9	142
12	A Polymerization-Induced Self-Assembly Approach to Nanoparticles Loaded with Singlet Oxygen Generators. Macromolecules, 2016, 49, 7277-7285.	4.8	135
13	Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angewandte Chemie, 2019, 131, 5224-5243.	2.0	108
14	Visible Light-Mediated Polymerization-Induced Self-Assembly Using Continuous Flow Reactors. Macromolecules, 2018, 51, 5165-5172.	4.8	105
15	Copolymers with Controlled Molecular Weight Distributions and Compositional Gradients through Flow Polymerization. Macromolecules, 2018, 51, 4553-4563.	4.8	104
16	2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and Polymerization-Induced Self-Assembly in the Presence of Air. ACS Macro Letters, 2017, 6, 1237-1244.	4.8	101
17	Big Is Beautiful: Enhanced saRNA Delivery and Immunogenicity by a Higher Molecular Weight, Bioreducible, Cationic Polymer. ACS Nano, 2020, 14, 5711-5727.	14.6	92
18	Exploiting Wavelength Orthogonality for Successive Photoinduced Polymerization-Induced Self-Assembly and Photo-Crosslinking. ACS Macro Letters, 2018, 7, 1376-1382.	4.8	91

#	Article	IF	CITATIONS
19	Pushing the Limits of High Throughput PET-RAFT Polymerization. Macromolecules, 2018, 51, 7600-7607.	4.8	90
20	An Efficient and Highly Versatile Synthetic Route to Prepare Iron Oxide Nanoparticles/Nanocomposites with Tunable Morphologies. Langmuir, 2014, 30, 10493-10502.	3.5	81
21	The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers. Polymer Chemistry, 2018, 9, 1735-1744.	3.9	64
22	A Selfâ€Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization. Angewandte Chemie - International Edition, 2018, 57, 10102-10106.	13.8	59
23	Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. Journal of Controlled Release, 2021, 338, 201-210.	9.9	53
24	Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polymer Chemistry, 2019, 10, 2406-2414.	3.9	51
25	Polymerization of a Photocleavable Monomer Using Visible Light. Macromolecular Rapid Communications, 2016, 37, 905-910.	3.9	50
26	A cocktail of vitamins for aqueous RAFT polymerization in an open-to-air microtiter plate. Polymer Chemistry, 2019, 10, 4643-4654.	3.9	47
27	Biofilm dispersal using nitric oxide loaded nanoparticles fabricated by photo-PISA: influence of morphology. Chemical Communications, 2017, 53, 12894-12897.	4.1	45
28	Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and Structure on Inhibition of a <i>Pseudomonas</i> Biofilm. ACS Applied Materials & Interfaces, 2020, 12, 55243-55254.	8.0	42
29	A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes. Chemical Communications, 2014, 50, 8181-8184.	4.1	32
30	An Oxygenâ€Tolerant PETâ€RAFT Polymerization for Screening Structure–Activity Relationships. Angewandte Chemie, 2018, 130, 1573-1578.	2.0	32
31	Gradient Polymerization–Induced Selfâ€Assembly: A Oneâ€5tep Approach. Macromolecular Rapid Communications, 2020, 41, e1900493.	3.9	23
32	A Selfâ€Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization. Angewandte Chemie, 2018, 130, 10259-10263.	2.0	11
33	Potent Virustatic Polymer–Lipid Nanomimics Block Viral Entry and Inhibit Malaria Parasites In Vivo. ACS Central Science, 2022, 8, 1238-1257.	11.3	9
34	An improved synthesis of poly(amidoamine)s for complexation with self-amplifying RNA and effective transfection. Polymer Chemistry, 2020, 11, 5861-5869.	3.9	8
35	Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst. Journal of Visualized Experiments, 2016, , .	0.3	2
36	Macromol. Rapid Commun. 11/2016. Macromolecular Rapid Communications, 2016, 37, 940-940.	3.9	0