Giacomo Cavalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8956918/publications.pdf

Version: 2024-02-01

16127 23500 17,897 129 58 124 citations h-index g-index papers 152 152 152 16506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics, 2022, 23, 325-341.	7.7	182
2	Mechanisms of Polycomb group protein function in cancer. Cell Research, 2022, 32, 231-253.	5.7	52
3	SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Molecular Cell, 2022, 82, 816-832.e12.	4.5	29
4	Comprehensive characterization of the epigenetic landscape in Multiple Myeloma. Theranostics, 2022, 12, 1715-1729.	4.6	10
5	HiCmapTools: a tool to access HiC contact maps. BMC Bioinformatics, 2022, 23, 64.	1.2	3
6	A shared ancient enhancer element differentially regulates the bric-a-brac tandem gene duplicates in the developing Drosophila leg. PLoS Genetics, 2022, 18, e1010083.	1.5	5
7	Understanding 3D genome organization by multidisciplinary methods. Nature Reviews Molecular Cell Biology, 2021, 22, 511-528.	16.1	185
8	Clinical Correlations of Polycomb Repressive Complex 2 in Different Tumor Types. Cancers, 2021, 13, 3155.	1.7	14
9	Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization. Methods in Molecular Biology, 2021, 2157, 221-237.	0.4	4
10	Higher-Order Chromosomal Structures Mediate Genome Function. Journal of Molecular Biology, 2020, 432, 676-681.	2.0	37
11	Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nature Genetics, 2020, 52, 1151-1157.	9.4	127
12	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
13	Role of Polycomb Complexes in Normal and Malignant Plasma Cells. International Journal of Molecular Sciences, 2020, 21, 8047.	1.8	9
14	Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLoS Genetics, 2020, 16, e1008673.	1.5	32
15	4D Genome Rewiring during Oncogene-Induced and Replicative Senescence. Molecular Cell, 2020, 78, 522-538.e9.	4.5	107
16	Widespread activation of developmental gene expression characterized by PRC1-dependent chromatin looping. Science Advances, 2020, 6, eaax4001.	4.7	72
17	Comprehensive Characterization of the Epigenetic Landscape in Multiple Myeloma. Blood, 2020, 136, 2-3.	0.6	O
18	Title is missing!. , 2020, 16, e1008673.		0

#	Article	IF	Citations
19	Title is missing!. , 2020, 16, e1008673.		О
20	Title is missing!. , 2020, 16, e1008673.		0
21	Title is missing!. , 2020, 16, e1008673.		0
22	Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571, 489-499.	13.7	863
23	The multiscale effects of polycomb mechanisms on 3D chromatin folding. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 399-417.	2.3	33
24	Principles of genome folding into topologically associating domains. Science Advances, 2019, 5, eaaw1668.	4.7	415
25	Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. BioEssays, 2019, 41, e1800222.	1.2	41
26	Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms. Molecular Cell, 2019, 74, 212-222.e5.	4.5	183
27	EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation. Leukemia, 2019, 33, 2047-2060.	3.3	33
28	Global chromatin conformation differences in the Drosophila dosage compensated chromosome X. Nature Communications, 2019, 10, 5355.	5.8	28
29	TADs are 3D structural units of higher-order chromosome organization in <i>Drosophila</i> . Science Advances, 2018, 4, eaar8082.	4.7	237
30	Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture. Methods in Molecular Biology, 2018, 1675, 233-246.	0.4	34
31	Loss of PRC1 induces higher-order opening of Hox loci independently of transcription during Drosophila embryogenesis. Nature Communications, 2018, 9, 3898.	5.8	48
32	Challenges and guidelines toward 4D nucleome data and model standards. Nature Genetics, 2018, 50, 1352-1358.	9.4	47
33	PRC2 targeting is a therapeutic strategy for EZ score defined high-risk multiple myeloma patients and overcome resistance to IMiDs. Clinical Epigenetics, 2018, 10, 121.	1.8	32
34	Polycomb-Dependent Chromatin Looping Contributes to Gene Silencing during Drosophila Development. Molecular Cell, 2018, 71, 73-88.e5.	4.5	208
35	Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma, 2017, 126, 33-44.	1.0	143
36	Three-Dimensional Genome Organization and Function in <i>Drosophila</i> . Genetics, 2017, 205, 5-24.	1.2	61

#	Article	IF	Citations
37	Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nature Genetics, 2017, 49, 876-886.	9.4	81
38	Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell, 2017, 171, 34-57.	13.5	842
39	Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell, 2017, 171, 557-572.e24.	13.5	1,060
40	Chromosome topology guides the <i>Drosophila</i> Dosage Compensation Complex for target gene activation. EMBO Reports, 2017, 18, 1854-1868.	2.0	39
41	Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions. Nature Communications, 2017, 8, 1753.	5.8	137
42	Polycomb Function and Nuclear Organization. , 2017, , 131-163.		2
43	Chromatin Immunoprecipitation Experiments from Whole Drosophila Embryos or Larval Imaginal Discs. Bio-protocol, 2017, 7, e2327.	0.2	9
44	EZH2 in normal hematopoiesis and hematological malignancies. Oncotarget, 2016, 7, 2284-2296.	0.8	77
45	Regulation of Genome Architecture and Function by Polycomb Proteins. Trends in Cell Biology, 2016, 26, 511-525.	3.6	91
46	Following the Motion of Polycomb Bodies in Living Drosophila Embryos. Methods in Molecular Biology, 2016, 1480, 283-288.	0.4	0
47	Chromosome Conformation Capture on Chip (4C): Data Processing. Methods in Molecular Biology, 2016, 1480, 243-261.	0.4	O
48	Coordinate redeployment of PRC1 proteins suppresses tumor formation during Drosophila development. Nature Genetics, 2016, 48, 1436-1442.	9.4	70
49	Organization and function of the 3D genome. Nature Reviews Genetics, 2016, 17, 661-678.	7.7	821
50	Targeting EZH2 in Multiple Myeloma Could be Promising for a Subgroup of MM Patients in Combination with IMiDs. Blood, 2016, 128, 311-311.	0.6	8
51	MACVIA-LR (FIGHTING CHRONIC DISEASES FOR ACTIVE AND HEALTHY AGEING IN LANGUEDOC-ROUSSILLON): A SUCCESS STORY OF THE EUROPEAN INNOVATION PARTNERSHIP ON ACTIVE AND HEALTHY AGEING. Journal of Frailty & Damp; Aging, the, 2016, 5, 1-9.	0.8	8
52	In vivo formaldehyde cross-linking: it is time for black box analysis. Briefings in Functional Genomics, 2015, 14, 163-165.	1.3	64
53	Developmental determinants in non-communicable chronic diseases and ageing. Thorax, 2015, 70, 595-597.	2.7	45
54	Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila. Cell Reports, 2015, 11, 1437-1445.	2.9	15

#	Article	IF	Citations
55	The Role of Chromosome Domains in Shaping the Functional Genome. Cell, 2015, 160, 1049-1059.	13.5	391
56	PRC1 proteins orchestrate three-dimensional genome architecture. Nature Genetics, 2015, 47, 1105-1106.	9.4	2
57	Enhancer of zeste acts as a major developmental regulator of <i>Ciona intestinalis</i> Biology Open, 2015, 4, 1109-1121.	0.6	3
58	Distinct polymer physics principles govern chromatin dynamics in mouse and Drosophila topological domains. BMC Genomics, 2015, 16, 607.	1.2	11
59	Chromatin-Driven Behavior of Topologically Associating Domains. Journal of Molecular Biology, 2015, 427, 608-625.	2.0	95
60	Cooperativity, Specificity, and Evolutionary Stability of Polycomb Targeting in Drosophila. Cell Reports, 2014, 9, 219-233.	2.9	69
61	Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Research, 2014, 42, 9553-9561.	6.5	362
62	Chromosomes: now in 3D!. Nature Reviews Molecular Cell Biology, 2014, 15, 6-6.	16.1	7
63	Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Current Opinion in Genetics and Development, 2014, 25, 30-37.	1.5	84
64	MACVIA-LR, Reference site of the European Innovation Partnership on Active and Healthy Ageing (EIP on) Tj ETQo	1.2 rgBT	/Overlock 1
65	Identification of Regulators of the Three-Dimensional Polycomb Organization by a Microscopy-Based Genome-wide RNAi Screen. Molecular Cell, 2014, 54, 485-499.	4.5	49
66	A RING to Rule Them All: RING1 as Silencer and Activator. Developmental Cell, 2014, 28, 1-2.	3.1	4
67	Topological Organization of Drosophila Hox Genes Using DNA Fluorescent In Situ Hybridization. Methods in Molecular Biology, 2014, 1196, 103-120.	0.4	17
68	PRC2 Controls Drosophila Oocyte Cell Fate by Repressing Cell Cycle Genes. Developmental Cell, 2013, 26, 431-439.	3.1	47
69	Polycomb Domain Formation Depends on Short and Long Distance Regulatory Cues. PLoS ONE, 2013, 8, e56531.	1.1	26
70	Functional implications of genome topology. Nature Structural and Molecular Biology, 2013, 20, 290-299.	3.6	382
71	Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization. Current Opinion in Genetics and Development, 2013, 23, 197-203.	1.5	61
72	The 3D Genome Shapes Up For Pluripotency. Cell Stem Cell, 2013, 13, 3-4.	5.2	11

#	Article	IF	Citations
73	Polycomb Controls Gliogenesis by Regulating the Transient Expression of the Gcm/Glide Fate Determinant. PLoS Genetics, 2012, 8, e1003159.	1.5	10
74	EZH2 Goes Solo. Science, 2012, 338, 1430-1431.	6.0	17
75	Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome. Cell, 2012, 148, 458-472.	13.5	1,728
76	Progressive Polycomb Assembly on H3K27me3 Compartments Generates Polycomb Bodies with Developmentally Regulated Motion. PLoS Genetics, 2012, 8, e1002465.	1.5	110
77	Polycomb: a paradigm for genome organization from one to three dimensions. Current Opinion in Cell Biology, 2012, 24, 405-414.	2.6	39
78	Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell, 2011, 144, 214-226.	13.5	374
79	Rolling ES Cells Down the Waddington Landscape with Oct4 and Sox2. Cell, 2011, 145, 815-817.	13.5	22
80	From Linear Genes to Epigenetic Inheritance of Three-dimensional Epigenomes. Journal of Molecular Biology, 2011, 409, 54-61.	2.0	5
81	Trithorax group proteins: switching genes on and keeping them active. Nature Reviews Molecular Cell Biology, 2011, 12, 799-814.	16.1	429
82	Polycomb group proteins: repression in 3D. Trends in Genetics, 2011, 27, 454-464.	2.9	112
83	Editorial overview. Current Opinion in Cell Biology, 2011, 23, 255-257.	2.6	0
84	A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2294-2299.	3.3	104
85	Uncovering a tumor-suppressor function for Drosophila Polycomb group genes. Cell Cycle, 2010, 9, 215-216.	1.3	4
86	Chromatin Folding: From Linear Chromosomes to the 4D Nucleus. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 461-473.	2.0	9
87	The DUBle Life of Polycomb Complexes. Developmental Cell, 2010, 18, 878-880.	3.1	9
88	Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development (Cambridge), 2009, 136, 3531-3542.	1.2	370
89	Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biology, 2009, 7, e1000013.	2.6	281
90	Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nature Genetics, 2009, 41, 1076-1082.	9.4	112

#	Article	IF	Citations
91	Genomic interactions: Chromatin loops and gene meeting points in transcriptional regulation. Seminars in Cell and Developmental Biology, 2009, 20, 849-855.	2.3	123
92	Chapter 2 Polycomb Group Proteins and Longâ€Range Gene Regulation. Advances in Genetics, 2008, 61, 45-66.	0.8	20
93	Genome Regulation by Polycomb and Trithorax Proteins. Cell, 2007, 128, 735-745.	13.5	1,258
94	Chromosome kissing. Current Opinion in Genetics and Development, 2007, 17, 443-450.	1.5	70
95	Combinatorial epigenetics, "junk DNAâ€; and the evolution of complex organisms. Gene, 2007, 390, 232-242.	1.0	62
96	Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Reviews Genetics, 2007, 8, 104-115.	7.7	721
97	Mapping the Distribution of Chromatin Proteins by ChIP on Chip. Methods in Enzymology, 2006, 410, 316-341.	0.4	56
98	RNAi Components Are Required for Nuclear Clustering of Polycomb Group Response Elements. Cell, 2006, 124, 957-971.	13.5	288
99	PRE-Mediated Bypass of Two Su(Hw) Insulators Targets PcG Proteins to a Downstream Promoter. Developmental Cell, 2006, 11, 117-124.	3.1	77
100	Chromosomal Distribution of PcG Proteins during Drosophila Development. PLoS Biology, 2006, 4, e170.	2.6	218
101	From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Research, 2006, 14, 363-375.	1.0	157
102	Cellular memory and dynamic regulation of polycomb group proteins. Current Opinion in Cell Biology, 2006, 18, 275-283.	2.6	122
103	Polycomb group-dependent Cyclin A repression in Drosophila. Genes and Development, 2006, 20, 501-513.	2.7	52
104	The role of Polycomb Group Proteins in Cell Cycle Regulation During Development. Cell Cycle, 2006, 5, 1189-1197.	1.3	89
105	MODELLING OF POLYCOMB-DEPENDENT CHROMOSOMAL INTERACTIONS INVOLVED IN DROSOPHILA GENE SILENCING. Biophysical Reviews and Letters, 2006, 01, 141-151.	0.9	0
106	MODELLING OF POLYCOMB-DEPENDENT CHROMOSOMAL INTERACTIONS INVOLVED IN DROSOPHILA GENE SILENCING. International Journal of Modern Physics C, 2006, 17, 757-767.	0.8	1
107	Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature, 2005, 434, 533-538.	13.7	136
108	The Epigenome Network of Excellence. PLoS Biology, 2005, 3, e177.	2.6	18

#	Article	IF	CITATIONS
109	Epigenetic Inheritance of Chromatin States Mediated by Polycomb and Trithorax Group Proteins in Drosophila., 2005, 38, 31-63.		15
110	Combined Immunostaining and FISH Analysis of Polytene Chromosomes., 2004, 247, 289-304.		45
111	Interaction between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14806-14811.	3.3	7 3
112	Dissection of a Natural RNA Silencing Process in the Drosophila melanogaster Germ Line. Molecular and Cellular Biology, 2004, 24, 6742-6750.	1.1	166
113	Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO Journal, 2004, 23, 857-868.	3.5	83
114	Engrailed and polyhomeotic maintain posterior cell identity through cubitus-interruptus regulation. Developmental Biology, 2004, 272, 522-535.	0.9	41
115	SNR1 is an essential subunit in a subset of drosophila brm complexes, targeting specific functions during development. Developmental Biology, 2003, 253, 291-308.	0.9	48
116	Identification and characterization of polyhomeotic PREs and TREs. Developmental Biology, 2003, 261, 426-442.	0.9	55
117	Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes and Development, 2003, 17, 2406-2420.	2.7	221
118	Protein-DNA interaction mapping using genomic tiling path microarrays in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9428-9433.	3.3	73
119	The MYST Domain Acetyltransferase Chameau Functions in Epigenetic Mechanisms of Transcriptional Repression. Current Biology, 2002, 12, 762-766.	1.8	73
120	Chromatin as a eukaryotic template of genetic information. Current Opinion in Cell Biology, 2002, 14, 269-278.	2.6	25
121	Epigenetic Inheritance of Active Chromatin After Removal of the Main Transactivator. Science, 1999, 286, 955-958.	6.0	238
122	Chromo-domain proteins: linking chromatin structure to epigenetic regulation. Current Opinion in Cell Biology, 1998, 10, 354-360.	2.6	168
123	The Drosophila Fab-7 Chromosomal Element Conveys Epigenetic Inheritance during Mitosis and Meiosis. Cell, 1998, 93, 505-518.	13.5	350
124	Heritable Chromatin States Induced by the Polycomb and Trithorax Group Genes. Novartis Foundation Symposium, 1998, 214, 51-66.	1.2	22
125	Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO Journal, 1997, 16, 3621-3632.	3.5	230
126	Inactivation of topoisomerases affects transcription-dependent chromatin transitions in rDNA but not in a gene transcribed by RNA polymerase II EMBO Journal, 1996, 15, 590-597.	3.5	35

#	Article	IF	CITATIONS
127	Chromatin transitions during activation and repression of galactose-regulated genes in yeast EMBO Journal, 1993, 12, 4603-4613.	3.5	98
128	Identification of the peroxidation product hydroxystearic acid in Lewis lung carcinoma cells. Biochemical and Biophysical Research Communications, 1991, 178, 1260-1265.	1.0	12
129	Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms. SSRN Electronic Journal, 0, , .	0.4	2