Charles L Mccormick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8956339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Perspective on the History and Current Opportunities of Aqueous RAFT Polymerization. Macromolecular Rapid Communications, 2022, 43, .	2.0	8
2	Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration. Nature Communications, 2021, 12, 3123.	5.8	9
3	Guanidinium-Functionalized Interpolyelectrolyte Complexes Enabling RNAi in Resistant Insect Pests. Biomacromolecules, 2018, 19, 1111-1117.	2.6	68
4	Amphoteric, Sulfonamide-Functionalized "Polysoaps― CO2-Induced Phase Separation for Water Remediation. Macromolecules, 2018, 51, 9052-9059.	2.2	12
5	Aqueous RAFT Synthesis of Glycopolymers for Determination of Saccharide Structure and Concentration Effects on Amyloid \hat{l}^2 Aggregation. Biomacromolecules, 2017, 18, 3359-3366.	2.6	22
6	Aqueous RAFT at pH zero: enabling controlled polymerization of unprotected acyl hydrazide methacrylamides. Polymer Chemistry, 2017, 8, 4978-4982.	1.9	13
7	High molecular weight and low dispersity polyacrylonitrile by low temperature RAFT polymerization. Journal of Polymer Science Part A, 2016, 54, 553-562.	2.5	32
8	Block ionomer complexes consisting of siRNA and aRAFT-synthesized hydrophilic-block-cationic copolymers II: the influence of cationic block charge density on gene suppression. Polymer Chemistry, 2016, 7, 6044-6054.	1.9	10
9	"One-Pot―Aminolysis/Thiol–Maleimide End-Group Functionalization of RAFT Polymers: Identifying and Preventing Michael Addition Side Reactions. Macromolecules, 2016, 49, 6193-6202.	2.2	34
10	Mechanistic Insights into Temperature-Dependent Trithiocarbonate Chain-End Degradation during the RAFT Polymerization of <i>N</i> -Arylmethacrylamides. Macromolecules, 2016, 49, 465-474.	2.2	25
11	RAFT Polymerization of "Splitters―and "Cryptos― Exploiting Azole- <i>N</i> -carboxamides As Blocked Isocyanates for Ambient Temperature Postpolymerization Modification. Macromolecules, 2016, 49, 554-563.	2.2	21
12	Antimicrobial Peptide Mimicking Primary Amine and Guanidine Containing Methacrylamide Copolymers Prepared by Raft Polymerization. Biomacromolecules, 2015, 16, 3845-3852.	2.6	58
13	Tunable pH- and CO2-Responsive Sulfonamide-Containing Polymers by RAFT Polymerization. Macromolecules, 2015, 48, 5487-5495.	2.2	41
14	Block ionomer complexes consisting of siRNA and aRAFT-synthesized hydrophilic-block-cationic copolymers: the influence of cationic block length on gene suppression. Polymer Chemistry, 2014, 5, 6967-6976.	1.9	14
15	Structurally controlled "polysoaps―via RAFT copolymerization of AMPS and n-dodecyl acrylamide for environmental remediation. Polymer Chemistry, 2014, 5, 819-827.	1.9	28
16	Endolytic, pH-Responsive HPMA- <i>b</i> -(<scp> </scp> -Glu) Copolymers Synthesized via Sequential Aqueous RAFT and Ring-Opening Polymerizations. Biomacromolecules, 2013, 14, 3793-3799.	2.6	13
17	Guanidine-Containing Methacrylamide (Co)polymers via <i>a</i> RAFT: Toward a Cell-Penetrating Peptide Mimic. ACS Macro Letters, 2012, 1, 100-104.	2.3	78
18	Antimicrobial Poly(methacrylamide) Derivatives Prepared via Aqueous RAFT Polymerization Exhibit Biocidal Efficiency Dependent upon Cation Structure. Biomacromolecules, 2012, 13, 2472-2482.	2.6	66

CHARLES L MCCORMICK

#	Article	IF	CITATIONS
19	Reversible Imine Shell Cross-Linked Micelles from Aqueous RAFT-Synthesized Thermoresponsive Triblock Copolymers as Potential Nanocarriers for "pH-Triggered―Drug Release. Macromolecules, 2011, 44, 1327-1334.	2.2	153
20	Facile, modular transformations of RAFT block copolymers via sequential isocyanate and thiol-ene reactions. Polymer Chemistry, 2011, 2, 1976.	1.9	36
21	RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA. Polymer Chemistry, 2011, 2, 1428.	1.9	63
22	Stimuliâ€responsive micelles of amphiphilic AMPS―b â€AAL copolymers in layerâ€byâ€layer films. Journal of Polymer Science Part A, 2011, 49, 1104-1111.	2.5	15
23	Rational Design of Biopolymers via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Symposium Series, 2010, , 49-63.	0.5	2
24	Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Progress in Polymer Science, 2010, 35, 45-93.	11.8	392
25	Bioconjugation of <scp>D</scp> â€glucuronic acid sodium salt to wellâ€defined primary amineâ€containing homopolymers and block copolymers. Journal of Polymer Science Part A, 2010, 48, 3052-3061.	2.5	16
26	Primary Amine-Functionalized Silicon Surfaces via Click Chemistry with α-Alkynyl-Functionalized Poly(2-aminoethyl methacrylate). ACS Symposium Series, 2010, , 113-129.	0.5	3
27	Reversible gold "locked―synthetic vesicles derived from stimuli-responsive diblock copolymers. Polymer Chemistry, 2010, 1, 628.	1.9	26
28	Tailored Design of Au Nanoparticle-siRNA Carriers Utilizing Reversible Additionâ^'Fragmentation Chain Transfer Polymers. Biomacromolecules, 2010, 11, 1052-1059.	2.6	55
29	"Schizophrenic―Self-Assembly of Block Copolymers Synthesized <i>via</i> Aqueous RAFT Polymerization: From Micelles to Vesiclesâ€Paper number 143 in a series on Water-Soluble Polymers Macromolecules, 2010, 43, 1210-1217.	2.2	181
30	Reversible Interpolyelectrolyte Shell Cross-Linked Micelles from pH/Salt-Responsive Diblock Copolymers Synthesized via RAFT in Aqueous Solution. Macromolecules, 2010, 43, 7033-7040.	2.2	44
31	Rational Design of Targeted Cancer Therapeutics through the Multiconjugation of Folate and Cleavable siRNA to RAFT-Synthesized (HPMA-s-APMA) Copolymers. Biomacromolecules, 2010, 11, 505-514.	2.6	92
32	Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerization in an Inverse Microemulsion: Partitioning of Chain Transfer Agent (CTA) and Its Effects on Polymer Molecular Weight. Macromolecules, 2010, 43, 6599-6607.	2.2	29
33	Facile 'One-Pot' Preparation of Reversible, Disulfide-Containing Shell Cross-Linked Micelles from a RAFT-Synthesized, pH-Responsive Triblock Copolymer in Water at Room Temperature. Australian Journal of Chemistry, 2009, 62, 1520.	0.5	47
34	Aqueous RAFT polymerization of 2â€aminoethyl methacrylate to produce wellâ€defined, primary amine functional homo―and copolymers. Journal of Polymer Science Part A, 2009, 47, 5405-5415.	2.5	66
35	Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerization in an Inverse Microemulsion System: Homopolymerization, Chain Extension, and Block Copolymerizationâ€Paper no. 140 in a series on Water-Soluble Polymers Macromolecules, 2009, 42, 5043-5052.	2.2	23
36	Facile Synthesis of Multivalent Folate-Block Copolymer Conjugates via Aqueous RAFT Polymerization: Targeted Delivery of siRNA and Subsequent Gene Suppression. Biomacromolecules, 2009, 10, 936-943.	2.6	106

CHARLES L MCCORMICK

#	Article	IF	CITATIONS
37	Reversible "Self-Locked―Micelles from a Zwitterion-Containing Triblock Copolymer. Macromolecules, 2009, 42, 4941-4945.	2.2	30
38	Tuning Nanostructure Morphology and Gold Nanoparticle "Locking―of Multi-Responsive Amphiphilic Diblock Copolymers †Paper No. 138 in a series on Water Soluble Polymers Macromolecules, 2009, 42, 2958-2964.	2.2	89
39	Temperature-induced ordering and gelation of star micelles based on ABA triblocks synthesized via aqueous RAFT polymerization. Soft Matter, 2009, 5, 2179.	1.2	16
40	Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene deliveryâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1018-1036.	6.6	321
41	Structural Characterization and Solution Properties of a Galacturonate Polysaccharide Derived from <i>Aloe vera</i> Capable of in Situ Gelation. Biomacromolecules, 2008, 9, 472-480.	2.6	57
42	RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter, 2008, 4, 1760.	1.2	192
43	Aqueous RAFT Synthesis of pH-Responsive Triblock Copolymer mPEOâ^'PAPMAâ^'PDPAEMA and Formation of Shell Cross-Linked Micelles. Macromolecules, 2008, 41, 8429-8435.	2.2	138
44	Thermoreversible Hydrogels from RAFT-Synthesized BAB Triblock Copolymers: Steps toward Biomimetic Matrices for Tissue Regeneration. Biomacromolecules, 2008, 9, 481-486.	2.6	122
45	Aqueous RAFT Synthesis of Micelle-Forming Amphiphilic Block Copolymers Containing <i>N</i> -Acryloylvaline. Dual Mode, Temperature/pH Responsiveness, and "Locking―of Micelle Structure through Interpolyelectrolyte Complexation. Macromolecules, 2007, 40, 6473-6480.	2.2	79
46	Layer-by-Layer Assembly of pH-Responsive, Compositionally Controlled (Co)polyelectrolytes Synthesized via RAFT. Langmuir, 2007, 23, 230-240.	1.6	26
47	In Situ Formation of Gold-"Decorated―Vesicles from a RAFT-Synthesized, Thermally Responsive Block Copolymer§. Macromolecules, 2007, 40, 8524-8526.	2.2	103
48	Facile Synthetic Procedure for ω, Primary Amine Functionalization Directly in Water for Subsequent Fluorescent Labeling and Potential Bioconjugation of RAFT-Synthesized (Co)Polymers. Biomacromolecules, 2007, 8, 2337-2341.	2.6	81
49	Effect of Sequential Layer-by-Layer Surface Modifications on the Surface Energy of Plasma-Modified Poly(dimethylsiloxane). Langmuir, 2007, 23, 667-672.	1.6	20
50	Electrolyte- and pH-responsive polyampholytes with potential as viscosity-control agents in enhanced petroleum recovery. Journal of Applied Polymer Science, 2007, 104, 2812-2821.	1.3	43
51	RAFT Synthesis and Solution Properties of pHâ€Responsive Styrenicâ€Based AB Diblock Copolymers of 4â€Vinylbenzyltrimethylphosphonium Chloride with <i>N</i> , <i>N</i> â€Dimethylbenzylvinylamine. Macromolecular Chemistry and Physics, 2007, 208, 2339-2347.	1.1	21
52	Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007, 32, 283-351.	11.8	695
53	Stimuli-Responsive Block Copolymers by RAFT and Their Micellization Behavior. ACS Symposium Series, 2007, , 73-82.	0.5	1
54	RAFT Synthesis of a Thermally Responsive ABC Triblock Copolymer IncorporatingN-Acryloxysuccinimide for Facile in Situ Formation of Shell Cross-Linked Micelles in Aqueous Mediaâ€. Macromolecules, 2006, 39, 81-89.	2.2	208

#	Article	IF	CITATIONS
55	Synthesis of Reversible Shell Cross-Linked Micelles for Controlled Release of Bioactive Agentsâ€. Macromolecules, 2006, 39, 2726-2728.	2.2	275
56	Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT Polymerizationâ€. Macromolecules, 2006, 39, 1724-1730.	2.2	327
57	Synthetic Routes to Stimuliâ€Responsive Micelles, Vesicles, and Surfaces via Controlled/Living Radical Polymerizationâ^—. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 421-443.	2.2	46
58	Fluorescent Labeling of RAFT-Generated Poly(N-isopropylacrylamide) via a Facile Maleimideâ^'Thiol Coupling Reactionâ€. Biomacromolecules, 2006, 7, 1389-1392.	2.6	206
59	Responsive Nanoassemblies via Interpolyelectrolyte Complexation of Amphiphilic Block Copolymer Micelles. Macromolecules, 2006, 39, 8594-8602.	2.2	133
60	Corona-Stabilized Interpolyelectrolyte Complexes of SiRNA with Nonimmunogenic, Hydrophilic/Cationic Block Copolymers Prepared by Aqueous RAFT Polymerizationâ€. Macromolecules, 2006, 39, 6871-6881.	2.2	84
61	Stimuli-responsive ampholytic terpolymers ofN-acryloyl-valine, acrylamide, and (3-acrylamidopropyl)trimethylammonium chloride: Synthesis, characterization, and solution properties. Journal of Polymer Science Part A, 2006, 44, 3125-3139.	2.5	28
62	Polyampholyte terpolymers of amphoteric, amino acid-based monomers with acrylamide and (3-acrylamidopropyl)trimethyl ammonium chloride. Journal of Polymer Science Part A, 2006, 44, 4479-4493.	2.5	19
63	Characterization of pH-dependent micellization of polystyrene-based cationic block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. Polymer, 2006, 47, 4333-4340.	1.8	34
64	Synthetic Polyzwitterions: Water-Soluble Copolymers and Terpolymers. ACS Symposium Series, 2006, , 47-63.	0.5	7
65	Low Charge-Density Amphoteric Copolymers and Terpolymers with pH- and Salt-Responsive Behavior in Aqueous Media. ACS Symposium Series, 2006, , 129-151.	0.5	1
66	Reversible Addition Fragmentation Chain Transfer Polymerization of Water-Soluble, Ion-Containing Monomers. ACS Symposium Series, 2006, , 95-115.	0.5	11
67	Synthesis, Aqueous Solution Properties, and Biomedical Application of Polymeric Betaines. ACS Symposium Series, 2006, , 65-78.	0.5	4
68	Thermally Responsive Vesicles and Their Structural "Locking―through Polyelectrolyte Complex Formation. Angewandte Chemie - International Edition, 2006, 45, 5792-5795.	7.2	304
69	Chiroptical Properties of Homopolymers and Block Copolymers Synthesized from the Enantiomeric Monomers N-Acryloyl-L-Alanine and N-Acryloyl-D-Alanine Using Aqueous RAFT Polymerization. Australian Journal of Chemistry, 2006, 59, 749.	0.5	36
70	Aqueous RAFT Polymerization of Acrylamide andN,N-Dimethylacrylamide at Room Temperature. Macromolecular Rapid Communications, 2005, 26, 791-795.	2.0	104
71	Controlled/living polymerization of methacrylamide in aqueous media via the RAFT process. Journal of Polymer Science Part A, 2005, 43, 3141-3152.	2.5	49
72	Direct, Controlled Synthesis of the Nonimmunogenic, Hydrophilic Polymer, Poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in Aqueous Mediaâ€. Biomacromolecules, 2005, 6, 1846-1850.	2.6	182

#	Article	IF	CITATIONS
73	Synthesis and Evaluation of New Dicarboxylic Acid Functional Trithiocarbonates:Â RAFT Synthesis of Telechelic Poly(n-butyl acrylate)s. Macromolecules, 2005, 38, 9518-9525.	2.2	131
74	The Synthesis of Hydrophobically Modified Waterâ€Soluble Polyzwitterionic Copolymers and Responsiveness to Surfactants in Aqueous Solution. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 587-611.	1.2	13
75	Enhanced Coil Expansion and Intrapolymer Complex Formation of Linear Poly(methacrylic acid) Containing Poly(ethylene glycol) Graftsâ€. Macromolecules, 2004, 37, 2603-2612.	2.2	56
76	Aqueous solution properties of pH-responsive AB diblock acrylamido-styrenic copolymers synthesized via aqueous reversible addition-fragmentation chain transfer. Journal of Polymer Science Part A, 2004, 42, 1724-1734.	2.5	85
77	Synthesis, complex formation, and dilute-solution associative behavior of linear poly(methacrylic) Tj ETQq1 1 0.78	4314 rgB1 2.5	[/Qverlock
78	pH-Responsive ampholytic terpolymers of acrylamide, sodium 3-acrylamido-3-methylbutanoate, and (3-acrylamidopropyl)trimethylammonium chloride. I. Synthesis and characterization. Journal of Polymer Science Part A, 2004, 42, 3236-3251.	2.5	33
79	pH-responsive ampholytic terpolymers of acrylamide, sodium 3-acrylamido-3-methylbutanoate, and (3-acrylamidopropyl)trimethylammonium chloride. II. Solution properties. Journal of Polymer Science Part A, 2004, 42, 3252-3270.	2.5	24
80	Hydrophobically modified acrylamide-based polybetaines. I. Synthesis, characterization, and stimuli-responsive solution behavior. Journal of Applied Polymer Science, 2004, 92, 647-657.	1.3	42
81	Hydrophobically modified acrylamide-based polybetaines. II. Interaction with surfactants in aqueous solution. Journal of Applied Polymer Science, 2004, 92, 658-671.	1.3	25
82	pH-responsive polyzwitterions: A comparative study of acrylamide-based polyampholyte terpolymers and polybetaine copolymers. Journal of Applied Polymer Science, 2004, 94, 24-39.	1.3	40
83	Aqueous RAFT Polymerization: Recent Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled Structures. ChemInform, 2004, 35, no.	0.1	1
84	Direct Controlled Polymerization of a Cationic Methacrylamido Monomer in Aqueous Media via the RAFT Processâ€. Macromolecules, 2004, 37, 2728-2737.	2.2	122
85	Facile, Controlled, Room-Temperature RAFT Polymerization ofN-Isopropylacrylamideâ€. Biomacromolecules, 2004, 5, 1177-1180.	2.6	230
86	Hydrolytic Susceptibility of Dithioester Chain Transfer Agents and Implications in Aqueous RAFT Polymerizations. Macromolecules, 2004, 37, 1735-1741.	2.2	228
87	Kinetics and Molecular Weight Control of the Polymerization of Acrylamide via RAFTâ€. Macromolecules, 2004, 37, 8941-8950.	2.2	151
88	Aqueous RAFT Polymerization:  Recent Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled Structures. Accounts of Chemical Research, 2004, 37, 312-325.	7.6	529
89	RAFT Polymerization in Homogeneous Aqueous Media. ACS Symposium Series, 2003, , 586-602.	0.5	7
90	The direct polymerization of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer, 2003, 44, 6761-6765.	1.8	148

#	Article	IF	CITATIONS
91	Molecular weight control of polyacrylamide with sodium formate as a chain-transfer agent: Characterization via size exclusion chromatography/multi-angle laser light scattering and determination of chain-transfer constant. Journal of Polymer Science Part A, 2003, 41, 560-568.	2.5	40
92	Sulfobetaine-containing diblock and triblock copolymers via reversible addition-fragmentation chain transfer polymerization in aqueous media. Journal of Polymer Science Part A, 2003, 41, 1262-1281.	2.5	108
93	Aqueous Solution Properties of pH-Responsive AB Diblock Acrylamido Copolymers Synthesized via Aqueous RAFTâ€. Macromolecules, 2003, 36, 5982-5987.	2.2	137
94	Modification of Gold Surfaces with Water-Soluble (Co)polymers Prepared via Aqueous Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerizationâ€. Langmuir, 2003, 19, 5559-5562.	1.6	195
95	Conditions for Facile, Controlled RAFT Polymerization of Acrylamide in Waterâ€. Macromolecules, 2003, 36, 1436-1439.	2.2	129
96	Synthesis of Block Copolymers of 2- and 4-Vinylpyridine by RAFT Polymerization. Macromolecules, 2003, 36, 4679-4681.	2.2	123
97	Controlled/"Living―Polymerization of Sulfobetaine Monomers Directly in Aqueous Media via RAFTâ€. Macromolecules, 2002, 35, 8663-8666.	2.2	121
98	Synthesis and Solution Properties of Zwitterionic Polymers. Chemical Reviews, 2002, 102, 4177-4190.	23.0	804
99	RAFT Polymerization ofN,N-Dimethylacrylamide in Waterâ€. Macromolecules, 2002, 35, 4570-4572.	2.2	144
100	Facile Preparation of Transition Metal Nanoparticles Stabilized by Well-Defined (Co)polymers Synthesized via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization. Journal of the American Chemical Society, 2002, 124, 11562-11563.	6.6	359
101	Raft Polymerization ofN,N-Dimethylacrylamide Utilizing Novel Chain Transfer Agents Tailored for High Reinitiation Efficiency and Structural Controlâ€. Macromolecules, 2002, 35, 4123-4132.	2.2	176
102	Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT. Macromolecules, 2001, 34, 2248-2256.	2.2	705
103	Water-Soluble Polymers. 84. Controlled Polymerization in Aqueous Media of Anionic Acrylamido Monomers via RAFT. Macromolecules, 2001, 34, 6561-6564.	2.2	158
104	Water-Soluble Polymers. 80. Rheological and Photophysical Studies of pH-Responsive Terpolymers Containing Hydrophobic Twin-Tailed Acrylamide Monomers. Macromolecules, 2001, 34, 5579-5586.	2.2	50
105	Water-Soluble Polymers. 78. Viscosity and NRET Fluorescence Studies of pH-Responsive Twin-Tailed Associative Terpolymers Based on Acrylic Acid and Methacrylamide. Macromolecules, 2001, 34, 918-924.	2.2	29
106	Water-Soluble Polymers. 79. Interaction of Microblocky Twin-Tailed Acrylamido Terpolymers with Anionic, Cationic, and Nonionic Surfactants. Langmuir, 2001, 17, 1719-1725.	1.6	38
107	Water-soluble polymers. LXXXII. Shear degradation effects on drag reduction behavior of dilute polymer solutions. Journal of Applied Polymer Science, 2001, 82, 1211-1221.	1.3	17
108	Water-soluble polymers. LXXXIII. Correlation of experimentally determined drag reduction efficiency and extensional viscosity of high molecular weight polymers in dilute aqueous solution. Journal of Applied Polymer Science, 2001, 82, 1222-1231.	1.3	17

#	Article	IF	CITATIONS
109	Water Soluble Polymers. 76. Electrolyte Responsive Cyclocopolymers with Sulfobetaine Units Exhibiting Polyelectrolyte or Polyampholyte Behavior in Aqueous Media. Macromolecules, 2000, 33, 419-424.	2.2	60
110	Stimuli Responsive Water-Soluble and Amphiphilic (Co)polymers. ACS Symposium Series, 2000, , 1-13.	0.5	23
111	Water-Soluble Polymers. 77. Amphoteric Cyclocopolymers with Sulfobetaine Units:Â Phase Behavior in Aqueous Media and Solubilization ofp-Cresol in Microdomains. Macromolecules, 2000, 33, 2944-2951.	2.2	32
112	Electrolyte and pH responsive surfactant association in ionic semi-interpenetrating networks containing cellulose or chitin synthesized in lithium chloride-N,N-dimethylacetamide. Journal of Applied Polymer Science, 1999, 71, 989-998.	1.3	3
113	Amphipathic polymers with stimuli-responsive microdomains for water remediation: Binding studies withp-cresol. Journal of Applied Polymer Science, 1999, 74, 2290-2300.	1.3	11
114	Adsorption of a fungal hydrophobin onto surfaces as mediated by the associated polysaccharide schizophyllan. Biopolymers, 1999, 49, 621-633.	1.2	10
115	Examination of the structure/function relationship in the exchangeable apolipoprotein, apolipophorin-III. , 1999, 50, 486-495.		4
116	Water-Soluble Polymers. 73. Electrolyte- and pH-Responsive Zwitterionic Copolymers of 4-[(2-Acrylamido-2-methylpropyl)- dimethylammonio]butanoate with 3-[(2-Acrylamido-2-methyl-) Tj ETQq0 0 () rgB⊉/Øver	loc k :20 Tf 50
117	Water soluble polymers: 69. pH and electrolyte responsive copolymers of acrylamide and the zwitterionic monomer 4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate: synthesis and solution behaviour. Polymer, 1997, 38, 871-878.	1.8	62
118	Water soluble polymers: 70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer, 1997, 38, 879-886.	1.8	46
119	Water-soluble polymers. 71. pH responsive behavior of terpolymers of sodium acrylate, acrylamide, and the zwitterionic monomer 4-(2-acrylamido-2-methylpropanedimethylammonio)butanoate. Journal of Polymer Science Part A, 1997, 35, 231-242.	2.5	27
120	Water-soluble polymers. 72. synthesis and solution behavior of responsive copolymers of acrylamide and the zwitterionic monomer 6-(2-acrylamido-2-methylpropyldimethylammonio) hexanoate. Journal of Polymer Science Part A, 1997, 35, 243-253.	2.5	44
121	pH responsive microdomain formation in a De Novo polypeptide. , 1997, 41, 521-532.		4
122	Water-Soluble Copolymers. 64. Effects of pH and Composition on Associative Properties of Amphiphilic Acrylamide/Acrylic Acid Terpolymers. Macromolecules, 1996, 29, 254-262.	2.2	73
123	Photophysical and Rheological Studies of Amphiphilic Polyelectrolytes. ACS Symposium Series, 1995, , 551-567.	0.5	5
124	Water-soluble copolymers: 57. Amphiphilic cyclocopolymers of diallylalkoxybenzyl-methylammonium chloride. Polymer, 1994, 35, 3503-3512.	1.8	53
125	Water-Soluble Copolymers. 50. Effect of Surfactant Addition on the Solution Properties of Amphiphilic Copolymers of Acrylamide and Dimethyldodecyl(2-acrylamidoethyl)ammonium Bromide. Macromolecules, 1994, 27, 2145-2150.	2.2	51
126	Water-Soluble Polymers. 60. Synthesis and Solution Behavior of Terpolymers of Acrylic Acid, Acrylamide, and the Zwitterionic Monomer 3-[(2-Acrylamido-2-methylpropyl)dimethylammonio]-1-propanesulfonate. Macromolecules, 1994, 27, 3156-3161.	2.2	39

#	Article	IF	CITATIONS
127	Water-soluble copolymers. XLV. Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride. Journal of Applied Polymer Science, 1993, 48, 1115-1120.	1.3	36
128	Water-soluble copolymers. XLII. Cationic polyelectrolytes of acrylamide and 2-acrylamido-2-methylpropanetrimethylammonium chloride. Journal of Polymer Science Part A, 1993, 31, 1099-1104.	2.5	16
129	Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers. Macromolecules, 1993, 26, 6121-6126.	2.2	138
130	Water-Soluble Copolymers. XLI. Copolymers of Acrylamide and Sodium 3-Acrylamido-3-methylbutanoate. Journal of Macromolecular Science - Pure and Applied Chemistry, 1992, 29, 193-205.	1.2	24
131	Water-soluble copolymers. 43. Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methylpropyl]trimethylammonium chloride. Macromolecules, 1992, 25, 1896-1900.	2.2	60
132	Water-soluble copolymers. 39. Synthesis and solution properties of associative acrylamido copolymers with pyrenesulfonamide fluorescence labels. Macromolecules, 1992, 25, 1881-1886.	2.2	97
133	Water-soluble copolymers. 40. Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. Macromolecules, 1992, 25, 1887-1895.	2.2	97
134	Water soluble copolymers: 44. Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphonate and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride. Polymer, 1992, 33, 4384-4387.	1.8	39
135	Water soluble copolymers: 46. Hydrophilic sulphobetaine copolymers of acrylamide and 3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulphonate. Polymer, 1992, 33, 4617-4624.	1.8	58
136	Water-soluble polymers in enhanced oil recovery. Progress in Polymer Science, 1990, 15, 103-145.	11.8	78
137	Water-soluble polymers: 33. Ampholytic terpolymers of sodium 2-acrylamido-2-methylpropanesulphonate with 2-acrylamido-2-methylpropanedimethylammonium chloride and acrylamide: synthesis and aqueous-solution behaviour. Polymer, 1990, 31, 1100-1107.	1.8	35
138	Water-Soluble Polymers. XXXIV. Ampholyte Terpolymers of Sodium 3-Acrylamido-3-Methylbutanoatewith 2-Acrylamido-2-Methylpropane-Dimethylammonium Chloride and Acrylamide: Synthesis and Absorbency Behavior. Journal of Macromolecular Science Part A, Chemistry, 1990, 27, 539-547.	0.4	14
139	Water-Soluble Polymers. Xxxiv. Ampholytic Terpolymers of Sodium 3-Acrylamido-3-Methylbutanoate with 2-Acrylamido-2-Methylpropane-Dimethylammonium Chloride and Acrylamide: Synthesis and Absorbency Behavior. Journal of Macromolecular Science - Pure and Applied Chemistry, 1990, 27, 539-547.	1.2	5
140	Water-soluble copolymers. 29. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride: solution properties. Macromolecules, 1988, 21, 694-699.	2.2	62
141	Water-soluble polymers. 28. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride: synthesis and characterization. Macromolecules, 1988, 21, 686-693.	2.2	89
142	Title is missing!. Die Makromolekulare Chemie, 1987, 188, 357-370.	1.1	15
143	Water-soluble copolymers. 14. Potentiometric and turbidimetric studies of water-soluble copolymers of acrylamide: comparison of carboxylated and sulfonated copolymers. Macromolecules, 1986, 19, 542-547.	2.2	76
144	Water-soluble copolymers. VI. Dilute solution viscosity studies of random copolymers of acrylamide with sulfonated comonomers. Journal of Applied Polymer Science, 1984, 29, 713-730.	1.3	35

#	Article	IF	CITATIONS
145	Water-soluble copolymers. V. Compositional determination of random copolymers of acrylamide with sulfonated comonomers by infrared spectroscopy and C13 nuclear magnetic resonance. Journal of Applied Polymer Science, 1982, 27, 3103-3120.	1.3	40