
Jinyan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8956114/publications.pdf Version: 2024-02-01

LINVAN WANC

#	Article	IF	CITATIONS
1	A Rigid and Planar Aza-Based Ternary Anhydride for the Preparation of Cross-Linked Polyimide Membrane Displaying High CO2/CH4 Separation Performance. Polymers, 2022, 14, 389.	4.5	6
2	Improving the Thermal Properties of Polycarbonate via the Copolymerization of a Small Amount of Bisphenol Fluorene with Bisphenol A. International Journal of Polymer Science, 2022, 2022, 1-6.	2.7	3
3	Phosphonate-Functionalized Poly(phthalazinone ether ketones) Induce the Formation of Apatite Coatings for Enhanced Biocompatibility and Osteogenic Activity. ACS Applied Polymer Materials, 2022, 4, 2562-2572.	4.4	6
4	Preparation and characteristics of polymer matrix composite coatings with low infrared emissivity and highâ€ŧemperature resistance. Polymer Engineering and Science, 2022, 62, 1941-1949.	3.1	8
5	Synergistic Effect of Poly(aryl ether ketone) Matrices via Rational Ternary Copolymerization Enables Efficient and Stable Organic Solar Cells. Chemistry of Materials, 2022, 34, 430-439.	6.7	6
6	Fully bio-based furyl-functionalized bisphenols and bio-based cross-linking poly(aryl ether ketone)s with high biomass content, thermo-reversibility, excellent processing and mechanical properties. Polymer Degradation and Stability, 2022, 200, 109961.	5.8	4
7	Carbon spheres with rational designed surface and secondary particle-piled structures for fast and stable sodium storage. Journal of Energy Chemistry, 2021, 54, 368-376.	12.9	15
8	Deep eutectic solvent for curing of phthalonitrile resin: Lower the curing temperature but improve the properties of thermosetting. High Performance Polymers, 2021, 33, 538-545.	1.8	5
9	A novel phthalazinone-based epoxy resin with excellent rheological property and intrinsic flame retardancy. Journal of Materials Science, 2021, 56, 9079-9092.	3.7	3
10	Preparation and evaluation of a UV-curing hydrophilic semi-IPN coating for medical guidewires. Journal of Coatings Technology Research, 2021, 18, 1027-1035.	2.5	5
11	Kinetic analysis of the curing of branched phthalonitrile resin based on dynamic differential scanning calorimetry. Polymer Testing, 2021, 96, 107062.	4.8	9
12	Effect of <scp>IR</scp> â€laser treatment parameters on surface structure, roughness, wettability and bonding properties of fused deposition modelingâ€printed <scp>PEEK</scp> / <scp>CF</scp> . Journal of Applied Polymer Science, 2021, 138, 51181.	2.6	6
13	Engineering Ultramicroporous Carbon with Abundant Câ•O as Extended "Slope-Dominated―Sodium Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9727-9739.	6.7	27
14	Light-weight 1D heteroatoms-doped Fe3C@C nanofibers for microwave absorption with a thinner matching thickness. Journal of Alloys and Compounds, 2021, 885, 160968.	5.5	24
15	Synthesis of novel poly(phthalazinone fluorenyl ether ketone ketone)s with improved thermal stability and processability. Thermochimica Acta, 2020, 683, 178184.	2.7	17
16	Polybenzoxazine thermosets with enhanced toughness via blending with phthalazinoneâ€bearing thermal plastic copoly(aryl ether nitrile)s. Journal of Applied Polymer Science, 2020, 137, 48508.	2.6	10
17	Enhanced properties of phthalonitrile resins under lower curing temperature via complex curing agent. Polymers for Advanced Technologies, 2020, 31, 233-239.	3.2	13
18	Scalable fabrication of heteroatom-doped versatile hierarchical porous carbons with an all-in-one phthalonitrile precursor and their applications. Carbon, 2020, 159, 495-503.	10.3	23

Jinyan Wang

#	Article	IF	CITATIONS
19	RhBMP-2 immobilized on poly(phthalazinone ether nitrile ketone) via chemical and physical modification for promoting in vitro osteogenic differentiation. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111173.	5.0	7
20	Novel phthalazinoneâ€bearing tetrafunctional epoxy: Synthesis, characterization, and their toughening application for TGDDM system. Polymers for Advanced Technologies, 2020, 31, 635-644.	3.2	4
21	Constructing N, O-Containing micro/mesoporous covalent triazine-based frameworks toward a detailed analysis of the combined effect of N, O heteroatoms on electrochemical performance. Nano Energy, 2020, 74, 104789.	16.0	18
22	Wave-transparent composites based on phthalonitrile resins with commendable thermal properties and dielectric performance. Polymer, 2020, 198, 122490.	3.8	34
23	Construction of dimetal-containing dithiolene and Schiff base conjugated polymer coating: exploiting metal coordination as a design strategy for improving infrared stealth properties. Polymer Chemistry, 2019, 10, 5839-5848.	3.9	7
24	Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nature Communications, 2019, 10, 2107.	12.8	99
25	Enhanced thermal property via tunable bisphenol moieties in branched phthalonitrile thermoset. Polymer, 2019, 172, 372-381.	3.8	27
26	Improved Mechanical Properties of Copoly(Phthalazinone Ether Sulphone)s Composites Reinforced by Multiscale Carbon Fibre/Graphene Oxide Reinforcements: A Step Closer to Industrial Production. Polymers, 2019, 11, 237.	4.5	16
27	Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 6363-6373.	10.3	57
28	Partial bio-based poly (aryl ether ketone) derived from 2,5-furandicarboxylic acid with enhanced processability. Polymer Degradation and Stability, 2019, 161, 309-318.	5.8	21
29	Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode. ChemPhysChem, 2018, 19, 1579-1583.	2.1	50
30	Branched phenylâ€ <i>s</i> â€ŧriazine moieties to enhance thermal properties of phthalonitrile thermosets. Polymer International, 2018, 67, 189-196.	3.1	18
31	Novel phthalonitrile-based composites with excellent processing, thermal, and mechanical properties. High Performance Polymers, 2018, 30, 720-730.	1.8	11
32	An investigation of the relationship between the performance of polybenzoxazine and backbone structure of hyperbranched epoxy modifiers. Polymer International, 2018, 67, 100-110.	3.1	7
33	Lowâ€viscosity and soluble phthalonitrile resin with improved thermostability for organic waveâ€transparent composites. Journal of Applied Polymer Science, 2018, 135, 45976.	2.6	20
34	Compatibilization effect of aminated poly(phthalazinone ether ketone)s in carbon fiberâ€reinforced copoly(phthalazinone ether sulfone)s composites. Polymer Composites, 2018, 39, 4139-4147.	4.6	10
35	PPESK-Modified Multi-Functional Epoxy Resin and Its Application to the Pultrusion of Carbon Fiber. Polymers, 2018, 10, 1067.	4.5	2
36	Self-curing triphenol A-based phthalonitrile resin precursor acts as a flexibilizer and curing agent for phthalonitrile resin. RSC Advances, 2018, 8, 32899-32908.	3.6	23

JINYAN WANG

#	Article	IF	CITATIONS
37	Simple Fabrication of High-Efficiency N,O,F,P-Containing Electrodes through Host–Guest Doping for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 15764-15772.	6.7	9
38	One-pot strategy for covalent construction of POSS-modified silane layer on carbon fiber to enhance interfacial properties and anti-hydrothermal aging behaviors of PPBES composites. Journal of Materials Science, 2018, 53, 16303-16317.	3.7	22
39	Apatite Formation on Poly(aryl ether sulfone ketone) Surfaces by Means of Polydopamine Layers Functionalized with Phosphonate Groups. Advanced Materials Interfaces, 2018, 5, 1800003.	3.7	17
40	Reduced curing kinetic energy and enhanced thermal resistance of phthalonitrile resins modified with inorganic particles. Polymers for Advanced Technologies, 2018, 29, 1922-1929.	3.2	18
41	Preparation of Novel Epoxy Resins Bearing Phthalazinone Moiety and Their Application as High-Temperature Adhesives. Polymers, 2018, 10, 708.	4.5	9
42	A novel bioâ€based phthalonitrile resin derived from catechin: synthesis and comparison of curing behavior with petroleumâ€based counterpart. Polymer International, 2018, 67, 322-329.	3.1	20
43	Improving the curing process and thermal stability of phthalonitrile resin via novel mixed curing agents. Polymer International, 2017, 66, 876-881.	3.1	34
44	Toughening and reinforcing of benzoxazine resins using a new hyperbranched polyether epoxy as a non-phase-separation modifier. Polymer, 2017, 121, 217-227.	3.8	63
45	Construction of flexible and stable near-infrared absorbing polymer films containing nickel-bis(dithiolene) moieties via ligand-exchange post-polymerization modification. Polymer Chemistry, 2017, 8, 3977-3991.	3.9	2
46	Engineered Fabrication of Hierarchical Frameworks with Tuned Pore Structure and N,O-Co-Doping for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 31940-31949.	8.0	53
47	Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors. Nanoscale, 2016, 8, 16323-16331.	5.6	49
48	One-step functionalization of carbon fiber using in situ generated aromatic diazonium salts to enhance adhesion with PPBES resins. RSC Advances, 2016, 6, 70704-70714.	3.6	28
49	Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties. RSC Advances, 2016, 6, 12009-12020.	3.6	49
50	Temperature for curing phthalonitrile-terminated poly(phthalazinone ether nitrile) reduced by a mixed curing agent and its curing behavior. RSC Advances, 2015, 5, 92055-92060.	3.6	17
51	Enhanced thermal properties of phthalonitrile networks by cooperating phenyl-s-triazine moieties in backbones. Polymer, 2015, 77, 177-188.	3.8	35
52	Thermally stable phthalonitrile resins based on multiple oligo (aryl ether)s with phenyl-s-triazine moieties in backbones. RSC Advances, 2015, 5, 77027-77036.	3.6	21
53	Preparation and characterization of electrospun poly(phthalazinone ether nitrile ketone) membrane with novel thermally stable properties. Applied Surface Science, 2015, 351, 169-174.	6.1	16
54	Soluble and thermally stable copoly(phenyl-s-triazine)s containing both diphenylfluorene and phthalazinone units in the backbone. Polymer Bulletin, 2014, 71, 2641-2660.	3.3	15

Jinyan Wang

#	Article	IF	CITATIONS
55	Phthalonitrile-functional multiple arylene ether nitrile-containing phthalazinone moiety: facile synthesis, curing, and properties. High Performance Polymers, 2014, 26, 540-549.	1.8	16
56	UV-soft Imprinted Tunable Polymer Waveguide Ring Resonator for Microwave Photonic Filtering. Journal of Lightwave Technology, 2014, 32, 3924-3932.	4.6	14
57	Simple kuâ€band radio over fiber system with highâ€dispersion tolerance using a polymerâ€based microring resonator filter. Microwave and Optical Technology Letters, 2014, 56, 1129-1133.	1.4	2
58	Optical waveguide ring based notch filter for microwave photonic signal processing. , 2013, , .		0
59	A tunable optical waveguide ring resonator for microwave photonic filtering. , 2013, , .		3
60	Microwave photonic signal processing with polymer waveguide ring resonators. , 2012, , .		0
61	Highly thermostable rigid-rod networks constructed from an unsymmetrical bisphthalonitrile bearing phthalazinone moieties. Polymer Chemistry, 2012, 3, 1024.	3.9	38
62	Synthesis and characterization of novel photo-crosslinkable fluorinated poly(phthalazinone ether)s for optical waveguides. Polymer International, 2012, 61, 711-718.	3.1	12
63	Synthesis and characterization of phthalazinoneâ€based poly(aryl ether ketone) derived from 4,4′â€dichlorobenzophenone. Polymers for Advanced Technologies, 2012, 23, 742-747.	3.2	13
64	Effects of phenyl-s-triazine moieties on thermal stability and degradation behavior of aromatic polyether sulfones. Journal of Polymer Research, 2012, 19, 1.	2.4	10
65	Thermal degradation kinetics of poly(aryl ether sulfone 1,3,5-triazine)s containing phthalazinone moieties. Thermochimica Acta, 2011, 514, 51-57.	2.7	14
66	Synthesis, characterization, and crosslinking of soluble cyano-containing poly(arylene ether)s bearing phthalazinone moiety. Polymer, 2010, 51, 100-109.	3.8	45
67	Synthesis and characterization of partly fluorinated poly(phthalazinone ether)s crosslinked by allyl group for passive optical waveguides. Polymer, 2010, 51, 1524-1529.	3.8	32
68	Preparation and evaluation of epoxy methacrylate UV urable coatings containing phthalazinone. Polymer International, 2010, 59, 107-111.	3.1	9
69	Synthesis and characterization of poly(arylene ether <i>s</i> â€ŧriazine)s containing alkylâ€, aryl―and chloroâ€substituted phthalazinone moieties in the main chain. Polymer International, 2010, 59, 1233-1239.	3.1	23
70	Synthesis of phenyl-s-triazine-based copoly(aryl ether)s derived from hydroquinone and resorcinol. Polymer Degradation and Stability, 2009, 94, 2065-2071.	5.8	12
71	Synthesis and characterization of soluble copoly(arylene ether sulfone phenyl-s-triazine)s containing phthalazinone moieties in the main chain. Polymer, 2009, 50, 4520-4528.	3.8	36
72	Synthesis of High Molecular Weight Poly(phthalazinone ether)s by Ullmann Câ^'N and Câ^'O Condensation Reactions. Macromolecules, 2008, 41, 298-300.	4.8	38

#	Article	IF	CITATIONS
73	Synthesis and properties of organic soluble semicrystalline poly(aryl ether ketone)s copolymers containing phthalazinone moieties. Journal of Applied Polymer Science, 2007, 104, 1744-1753.	2.6	14
74	Lyotropic Liquid Crystalline Polyamides Containing Aromatic, Heterocyclic Structures: Preparation and Properties. Macromolecular Chemistry and Physics, 2006, 207, 1610-1615.	2.2	8