Maria Jose Morilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8955732/publications.pdf

Version: 2024-02-01

		236612	315357
55	1,585	25	38
papers	citations	h-index	g-index
55	55	55	2197
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhancing the anti-psoriatic activity of vitamin D3 employing nanostructured archaeolipid carriers. Journal of Drug Delivery Science and Technology, 2022, 73, 103455.	1.4	2
2	Macrophage apoptosis using alendronate in targeted nanoarchaeosomes. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 160, 42-54.	2.0	12
3	Preclinical autophagy modulatory nanomedicines: big challenges, slow advances. Expert Opinion on Drug Delivery, 2021, 18, 1415-1434.	2.4	1
4	Reparation of an Inflamed Air-Liquid Interface Cultured A549 Cells with Nebulized Nanocurcumin. Pharmaceutics, 2021, 13, .	2.0	1
5	Reparation of an Inflamed Air-Liquid Interface Cultured A549 Cells with Nebulized Nanocurcumin. Pharmaceutics, 2021, 13, 1331.	2.0	7
6	Fast Biofilm Penetration and Anti-PAO1 Activity of Nebulized Azithromycin in Nanoarchaeosomes. Molecular Pharmaceutics, 2020, 17, 70-83.	2.3	14
7	Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110961.	2.5	21
8	Superoxide dismutase in nanoarchaeosomes for targeted delivery to inflammatory macrophages. Colloids and Surfaces B: Biointerfaces, 2019, 179, 479-487.	2.5	24
9	The anti MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. Phytomedicine, 2019, 57, 339-351.	2.3	34
10	Novel imiquimod nanovesicles for topical vaccination. Colloids and Surfaces B: Biointerfaces, 2019, 174, 536-543.	2.5	8
11	G5G2.5 coreâ€shell tectoâ€dendrimer specifically targets reactive glia in brain ischemia. Journal of Neurochemistry, 2018, 144, 748-760.	2.1	12
12	Nanotoxicity of Lipid-Based Nanomedicines. , 2018, , 133-165.		1
13	Make It Simple: (SR-A1+TLR7) Macrophage Targeted NANOarchaeosomes. Frontiers in Bioengineering and Biotechnology, 2018, 6, 163.	2.0	15
14	Topical vaccination with super-stable ready to use nanovesicles. Colloids and Surfaces B: Biointerfaces, 2017, 152, 114-123.	2.5	19
15	Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine, 2017, 12, 1165-1175.	1.7	26
16	Nebulizing novel multifunctional nanovesicles: the impact of macrophage-targeted-pH-sensitive archaeosomes on a pulmonary surfactant. Journal of Materials Chemistry B, 2017, 5, 8083-8095.	2.9	18
17	Surviving nebulization-induced stress: dexamethasone in pH-sensitive archaeosomes. Nanomedicine, 2016, 11, 2103-2117.	1.7	30
18	Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids and Surfaces B: Biointerfaces, 2016, 139, 190-198.	2.5	118

#	Article	IF	Citations
19	Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania braziliensis Antigens. PLoS ONE, 2016, 11, e0150185.	1.1	25
20	Carrier Deformability in Drug Delivery. Current Pharmaceutical Design, 2016, 22, 1118-1134.	0.9	19
21	Nanomedical Therapeutic and Prophylaxis Strategies Against Intracellular Protozoa in the Americas. , 2015, , 297-317.		2
22	Nanomedicines against Chagas disease: an update on therapeutics, prophylaxis and diagnosis. Nanomedicine, 2015, 10, 465-481.	1.7	52
23	Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes. International Journal of Nanomedicine, 2014, 9, 3335.	3.3	19
24	Physicochemical characterization and cytotoxic studies of nonionic surfactant vesicles using sucrose esters as oral delivery systems. Colloids and Surfaces B: Biointerfaces, 2014, 117, 1-6.	2.5	29
25	Enhanced antimelanoma activity of methotrexate and zoledronic acid within polymeric sandwiches. Colloids and Surfaces B: Biointerfaces, 2014, 122, 19-29.	2.5	11
26	Structural features of ultradeformable archaeosomes for topical delivery of ovalbumin. Colloids and Surfaces B: Biointerfaces, 2014, 121, 281-289.	2.5	25
27	Archaeosomes display immunoadjuvant potential for a vaccine against Chagas disease. Human Vaccines and Immunotherapeutics, 2013, 9, 409-412.	1.4	18
28	Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. International Journal of Nanomedicine, 2013, 8, 3171.	3.3	89
29	The Intervention of Nanotechnology Against Epithelial Fungal Diseases. Journal of Biomaterials and Tissue Engineering, 2013, 3, 70-88.	0.0	12
30	Increased brain radioactivity by intranasal 32P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. International Journal of Nanomedicine, 2012, 7, 1373.	3.3	40
31	Ultradeformable archaeosomes as new topical adjuvants. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1319-1328.	1.7	51
32	In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against New World Leishmania species. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 157-163.	1.7	46
33	Selective cytotoxicity of PAMAM G5 core–PAMAM G2.5 shell tecto-dendrimers on melanoma cells. International Journal of Nanomedicine, 2012, 7, 4121.	3.3	31
34	Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages. International Journal of Nanomedicine, 2011, 6, 2715.	3.3	30
35	Topical and mucosal liposomes for vaccine delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 356-375.	3.3	38
36	M Cells Prefer Archaeosomes: An In Vitro/In Vivo Snapshot Upon Oral Gavage in Rats. Current Drug Delivery, 2011, 8, 320-329.	0.8	11

#	Article	IF	CITATIONS
37	Intracellular Bacteria and Protozoa. Fundamental Biomedical Technologies, 2011, , 745-811.	0.2	О
38	Nanotechnological approaches against Chagas disease. Advanced Drug Delivery Reviews, 2010, 62, 576-588.	6.6	64
39	Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. Journal of Controlled Release, 2010, 147, 368-376.	4.8	61
40	Archaeosomes made of Halorubrum tebenquichensetotal polar lipids: a new source of adjuvancy. BMC Biotechnology, 2009, 9, 71.	1.7	36
41	Avoiding failed reconstitution of ultradeformable liposomes upon dehydration. International Journal of Pharmaceutics, 2009, 372, 184-190.	2.6	22
42	Ethylendiamine core PAMAM dendrimers/siRNA complexes as in vitro silencing agents. International Journal of Pharmaceutics, 2009, 380, 189-200.	2.6	57
43	Brain and muscle of Wistar rats are the main targets of intravenous dendrimeric sulfadiazine. International Journal of Pharmaceutics, 2008, 360, 204-212.	2.6	21
44	Drug delivery systems against leishmaniasis? Still an open question. Expert Opinion on Drug Delivery, 2008, 5, 805-823.	2.4	60
45	Photodynamic ultradeformable liposomes: Design and characterization. International Journal of Pharmaceutics, 2007, 330, 183-194.	2.6	31
46	Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. International Journal of Pharmaceutics, 2006, 326, 160-168.	2.6	53
47	Etanidazole in pH-sensitive liposomes: Design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity. Journal of Controlled Release, 2005, 103, 599-607.	4.8	46
48	Benznidazole vs benznidazole in multilamellar liposomes: how different they interact with blood components?. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 213-219.	0.8	19
49	In vitro activity of Etanidazole against the protozoan parasite Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 2004, 99, 233-235.	0.8	15
50	Intravenous liposomal benznidazole as trypanocidal agent: increasing drug delivery to liver is not enough. International Journal of Pharmaceutics, 2004, 278, 311-318.	2.6	50
51	Liposomal Benznidazole: A High-Performance Liquid Chromatographic Determination for Biodistribution Studies. Journal of Chromatographic Science, 2003, 41, 405-409.	0.7	13
52	Development and in vitro characterisation of a benznidazole liposomal formulation. International Journal of Pharmaceutics, 2002, 249, 89-99.	2.6	42
53	On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Letters, 1999, 448, 193-196.	1.3	70
54	Ultradeformable phospholipid vesicles as a drug delivery system: a review. Research and Reports in Transdermal Drug Delivery, 0, , 55.	0.0	13

#	Article	IF	CITATIONS
55	Toll like receptors agonists-based nanomedicines as veterinary immunotherapies. Precision Nanomedicine, 0, , .	0.4	1