Clemens Cabernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8955595/publications.pdf

Version: 2024-02-01

361413 477307 1,877 36 20 citations h-index papers

g-index 41 41 41 1806 docs citations times ranked citing authors all docs

29

#	Article	IF	CITATIONS
1	The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biology, 2006, 8, 594-600.	10.3	288
2	Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes and Development, 2006, 20, 3464-3474.	5.9	241
3	A spindle-independent cleavage furrow positioning pathway. Nature, 2010, 467, 91-94.	27.8	163
4	Apical/Basal Spindle Orientation Is Required for Neuroblast Homeostasis and Neuronal Differentiation in Drosophila. Developmental Cell, 2009, 17, 134-141.	7.0	147
5	Cell Division Orientation in Animals. Current Biology, 2011, 21, R599-R609.	3.9	146
6	Distinct Roles for Two Receptor Tyrosine Kinases in Epithelial Branching Morphogenesis in Drosophila. Developmental Cell, 2005, 9, 831-842.	7.0	102
7	Principles and mechanisms of asymmetric cell division. Development (Cambridge), 2020, 147, .	2.5	83
8	Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells. Nature Communications, 2017, 8, 1383.	12.8	70
9	Fragile X protein controls neural stem cell proliferation in the Drosophila brain. Human Molecular Genetics, 2010, 19, 3068-3079.	2.9	67
10	Rootletin organizes the ciliary rootlet to achieve neuron sensory function in <i>Drosophila</i> Journal of Cell Biology, 2015, 211, 435-453.	5.2	63
11	Asymmetric cortical extension shifts cleavage furrow position in <i>Drosophila</i> neuroblasts. Molecular Biology of the Cell, 2011, 22, 4220-4226.	2.1	59
12	The Microcephaly-Associated Protein Wdr62/CG7337 Is Required to Maintain Centrosome Asymmetry in Drosophila Neuroblasts. Cell Reports, 2016, 14, 1100-1113.	6.4	55
13	Control of asymmetric cell division. Current Opinion in Cell Biology, 2014, 31, 84-91.	5.4	46
14	The Centriolar Protein Bld10/Cep135 Is Required to Establish Centrosome Asymmetry in Drosophila Neuroblasts. Current Biology, 2014, 24, 1548-1555.	3.9	46
15	Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions. Results and Problems in Cell Differentiation, 2017, 61, 183-210.	0.7	43
16	Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N. Developmental Cell, 2017, 42, 143-155.e5.	7.0	37
17	Live Imaging of Neuroblast Lineages within Intact Larval Brains in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2013, 2013, pdb.prot078162.	0.3	36
18	Asymmetrically dividing Drosophila neuroblasts utilize two spatially and temporally independent cytokinesis pathways. Nature Communications, 2015, 6, 6551.	12.8	29

#	Article	IF	Citations
19	Cellular and molecular mechanisms involved in branching morphogenesis of the Drosophila tracheal system. Journal of Applied Physiology, 2004, 97, 2347-2353.	2.5	24
20	A Genetic Mosaic Analysis With a Repressible Cell Marker Screen to Identify Genes Involved in Tracheal Cell Migration During Drosophila Air Sac Morphogenesis. Genetics, 2007, 176, 2177-2187.	2.9	22
21	Dynamic MAPK signaling activity underlies a transition from growth arrest to proliferation in <i>Drosophila scribble</i> mutant tumors. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	19
22	Spatiotemporally Controlled Myosin Relocalization and Internal Pressure Generate Sibling Cell Size Asymmetry. IScience, 2019, 13, 9-19.	4.1	16
23	Cytokinesis in <i>Drosophila melanogaster</i> . Cytoskeleton, 2012, 69, 791-809.	2.0	15
24	Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage. Nature Communications, 2017, 8, 326.	12.8	15
25	Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. PLoS Biology, 2020, 18, e3000762.	5 . 6	15
26	Mechanical regulation of cell size, fate, and behavior during asymmetric cell division. Current Opinion in Cell Biology, 2020, 67, 9-16.	5.4	11
27	Stem Cell Self-Renewal: Centrosomes on the Move. Current Biology, 2007, 17, R465-R467.	3.9	9
28	Mechanics of cell division and cytokinesis. Molecular Biology of the Cell, 2018, 29, 685-686.	2.1	5
29	Sibling cell size matters. ELife, 2017, 6, .	6.0	3
30	Neurogenesis: Premature Mitotic Entry Lets Cleavage Planes Take Off!. Current Biology, 2012, 22, R25-R28.	3.9	0
31	Asymmetric cortical extension leads to asymmetric cell division in Drosophila neuroblasts. FASEB Journal, 2012, 26, 591.4.	0.5	0
32	Spatiotemporally Controlled Myosin Relocalization and Internal Pressure Cause Biased Cortical Extension to Generate Sibling Cell Size Asymmetry. SSRN Electronic Journal, 0, , .	0.4	0
33	Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. , 2020, 18, e3000762.		0
34	Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. , 2020, 18, e3000762.		0
35	Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. , 2020, 18, e3000762.		0
36	Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. , 2020, 18, e3000762.		0