
Xiuping Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954818/publications.pdf Version: 2024-02-01

XILIDING LIANG

#	Article	IF	CITATIONS
1	Isolation and characterization of competitive exclusion microorganisms from animal wastes–based composts against Listeria monocytogenes. Journal of Applied Microbiology, 2022, 132, 4531-4543.	3.1	4
2	Efficacy of EPA-registered disinfectants against two human norovirus surrogates and Clostridioides difficile endospores. Journal of Applied Microbiology, 2022, 132, 4289-4299.	3.1	2
3	Efficacy of novel aqueous photoâ€chlorine dioxide against a human norovirus surrogate, bacteriophage MS2 and <i>Clostridium difficile</i> endospores, in suspension, on stainless steel and under greenhouse conditions. Journal of Applied Microbiology, 2021, 130, 1531-1545.	3.1	4
4	Genomeâ€wide association studies of antimicrobial activity in global sorghum. Crop Science, 2021, 61, 1301-1316.	1.8	7
5	Survival of <i>Clostridioides difficile</i> in finished dairy compost under controlled conditions. Journal of Applied Microbiology, 2021, 131, 996-1006.	3.1	4
6	Plant-Scale Validation of Physical Heat Treatment of Poultry Litter Composts Using Surrogate and Indicator Microorganisms for Salmonella. Applied and Environmental Microbiology, 2021, 87, .	3.1	2
7	A longitudinal study: Microbiological evaluation of two halal beef slaughterhouses in the United States. Food Control, 2021, 125, 107945.	5.5	1
8	Comparing and Modeling the Thermal Inactivation of Bacteriophages as Pathogenic Viruses Surrogates in Chicken Litter Compost. Compost Science and Utilization, 2020, 28, 87-99.	1.2	2
9	Persistence of Escherichia coli O157:H7 and Listeria monocytogenes on the exterior of three common food packaging materials. Food Control, 2020, 112, 107153.	5.5	10
10	Thermal resistance of Clostridium difficile endospores in dairy compost upon exposure to wet and dry heat treatments. Journal of Applied Microbiology, 2019, 127, 274-283.	3.1	6
11	Improving culture media for the isolation of Clostridium difficile from compost. Anaerobe, 2018, 51, 1-7.	2.1	13
12	Efficacy of Silver Dihydrogen Citrate and Steam Vapor against a Human Norovirus Surrogate, Feline Calicivirus, in Suspension, on Glass, and on Carpet. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
13	Survival of <i>Escherichia coli</i> O157:H7 and <i>Salmonella enterica</i> in animal wasteâ€based composts as influenced by compost type, storage condition and inoculum level. Journal of Applied Microbiology, 2018, 124, 1311-1323.	3.1	31
14	Comparative Recovery of Two Human Norovirus Surrogates, Feline Calicivirus and Murine Norovirus, with a Wet Vacuum System, Macrofoam-Tipped Swab, and Bottle Extraction Method from Carpets. Journal of Food Protection, 2018, 81, 963-968.	1.7	0
15	Testing a Nonpathogenic Surrogate Microorganism for Validating Desiccation-Adapted Salmonella Inactivation in Physically Heat-Treated Broiler Litter. Journal of Food Protection, 2018, 81, 1418-1424.	1.7	1
16	Composting To Inactivate Foodborne Pathogens for Crop Soil Application: A Review. Journal of Food Protection, 2018, 81, 1821-1837.	1.7	52
17	Prevalence of Human Noroviruses in Commercial Food Establishment Bathrooms. Journal of Food Protection, 2018, 81, 719-728.	1.7	12
18	Isolation of Toxigenic Clostridium difficile from Animal Manure and Composts Being Used as Biological Soil Amendments. Applied and Environmental Microbiology, 2018, 84, .	3.1	30

#	Article	IF	CITATIONS
19	Thermal Resistance and Gene Expression of both Desiccation-Adapted and Rehydrated Salmonella enterica Serovar Typhimurium Cells in Aged Broiler Litter. Applied and Environmental Microbiology, 2017, 83, .	3.1	42
20	Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poultry Science, 2017, 96, 1838-1848.	3.4	32
21	Selection of indigenous indicator micro-organisms for validating desiccation-adapted <i>Salmonella</i> reduction in physically heat-treated poultry litter. Journal of Applied Microbiology, 2017, 122, 1558-1569.	3.1	3
22	Application of bacteriophages to reduce Salmonella contamination on workers' boots in rendering-processing environment. Poultry Science, 2017, 96, 3700-3708.	3.4	7
23	Recovery Optimization and Survival of the Human Norovirus Surrogates Feline Calicivirus and Murine Norovirus on Carpet. Applied and Environmental Microbiology, 2017, 83, .	3.1	12
24	Microbiological Safety of Animal Wastes Processed by Physical Heat Treatment: An Alternative To Eliminate Human Pathogens in Biological Soil Amendments as Recommended by the Food Safety Modernization Act. Journal of Food Protection, 2017, 80, 392-405.	1.7	7
25	Persistence of Non-O157 Shiga Toxin–Producing Escherichia coli in Dairy Compost during Storage. Journal of Food Protection, 2017, 80, 1999-2005.	1.7	8
26	Characterizing Salmonella Contamination in Two Rendering Processing Plants. Journal of Food Protection, 2017, 80, 265-270.	1.7	7
27	The survival and inactivation of enteric viruses on soft surfaces: A systematic review of the literature. American Journal of Infection Control, 2016, 44, 1365-1373.	2.3	47
28	Prevalence and Characterization of Salmonella in Animal Meals Collected from Rendering Operations. Journal of Food Protection, 2016, 79, 1026-1031.	1.7	16
29	Improving the Enrichment and Plating Methods for Rapid Detection of Non-O157 Shiga Toxin–Producing Escherichia coli in Dairy Compost. Journal of Food Protection, 2016, 79, 413-420.	1.7	7
30	Factors Affecting Pathogen Survival in Finished Dairy Compost with Different Particle Sizes Under Greenhouse Conditions. Foodborne Pathogens and Disease, 2015, 12, 749-758.	1.8	5
31	Recovery and Disinfection of Two Human Norovirus Surrogates, Feline Calicivirus and Murine Norovirus, from Hard Nonporous and Soft Porous Surfaces. Journal of Food Protection, 2015, 78, 1842-1850.	1.7	19
32	Refrigerated Shelf Life of a Coconut Water-Oatmeal Mix and the Viability of Lactobacillus Plantarum Lp 115-400B. Foods, 2015, 4, 328-337.	4.3	8
33	Manure Source and Age Affect Survival of Zoonotic Pathogens during Aerobic Composting at Sublethal Temperatures. Journal of Food Protection, 2015, 78, 302-310.	1.7	15
34	Expression of Stress and Virulence Genes in Escherichia coli O157:H7 Heat Shocked in Fresh Dairy Compost. Journal of Food Protection, 2015, 78, 31-41.	1.7	19
35	Survival of Salmonella or Escherichia coli O157:H7 during Holding of Manure-Based Compost Mixtures at Sublethal Temperatures as Influenced by the Carbon Amendment. Journal of Food Protection, 2015, 78, 248-255.	1.7	9
36	The role of animal manure in the contamination of fresh food. , 2015, , 312-350.		8

3

#	Article	IF	CITATIONS
37	Developing a Two-Step Heat Treatment for Inactivating Desiccation-Adapted <i>Salmonella</i> spp. in Aged Chicken Litter. Foodborne Pathogens and Disease, 2015, 12, 104-109.	1.8	9
38	Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant. Canadian Journal of Microbiology, 2015, 61, 539-544.	1.7	14
39	Effects of Chicken Litter Storage Time and Ammonia Content on Thermal Resistance of Desiccation-Adapted Salmonella spp. Applied and Environmental Microbiology, 2015, 81, 6883-6889.	3.1	19
40	Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture (Switzerland), 2014, 4, 1-29.	3.1	217
41	Thermal and Nonthermal Factors Affecting Survival of Salmonella and Listeria monocytogenes in Animal Manure–Based Compost Mixtures. Journal of Food Protection, 2014, 77, 1512-1518.	1.7	23
42	Inactivation of Pathogens during Aerobic Composting of Fresh and Aged Dairy Manure and Different Carbon Amendments. Journal of Food Protection, 2014, 77, 1911-1918.	1.7	17
43	Rapid identification of Campylobacter jejuni from poultry carcasses and slaughtering environment samples by real-time PCR. Poultry Science, 2014, 93, 1587-1597.	3.4	13
44	Activities of muscadine grape skin and polyphenolic constituents against Helicobacter pylori. Journal of Applied Microbiology, 2013, 114, 982-991.	3.1	31
45	Analyzing Indicator Microorganisms, Antibiotic Resistant <i>Escherichia coli</i> , and Regrowth Potential of Foodborne Pathogens in Various Organic Fertilizers. Foodborne Pathogens and Disease, 2013, 10, 520-527.	1.8	17
46	A Framework for Developing Research Protocols for Evaluation of Microbial Hazards and Controls during Production That Pertain to the Application of Untreated Soil Amendments of Animal Origin on Land Used To Grow Produce That May Be Consumed Raw. Journal of Food Protection, 2013, 76, 1062-1084.	1.7	36
47	Thermal Inactivation of Desiccation-Adapted Salmonella spp. in Aged Chicken Litter. Applied and Environmental Microbiology, 2013, 79, 7013-7020.	3.1	54
48	Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria. Canadian Journal of Microbiology, 2013, 59, 39-45.	1.7	10
49	Validating Thermal Inactivation of Salmonella spp. in Fresh and Aged Chicken Litter. Applied and Environmental Microbiology, 2012, 78, 1302-1307.	3.1	37
50	Activities of muscadine grape skin and quercetin against Helicobacter pylori infection in mice. Journal of Applied Microbiology, 2011, 110, 139-146.	3.1	31
51	Inhibitory effects of enterococci on the production of hydrogen sulfide by hydrogen sulfide by hydrogen sulfide-producing bacteria in raw meat. Journal of Applied Microbiology, 2011, 111, 83-92.	3.1	8
52	Impact of indigenous microorganisms on Escherichia coli O157:H7 growth in cured compost. Bioresource Technology, 2011, 102, 9619-9625.	9.6	11
53	Determining Thermal Inactivation of Escherichia coli O157:H7 in Fresh Compost by Simulating Early Phases of the Composting Process. Applied and Environmental Microbiology, 2011, 77, 4126-4135.	3.1	38
54	Evaluation of Physical Coverings Used To Control Escherichia coli O157:H7 at the Compost Heap Surface. Applied and Environmental Microbiology, 2011, 77, 5044-5049.	3.1	19

#	Article	lF	CITATIONS
55	Fate of manure-borne pathogen surrogates in static composting piles of chicken litter and peanut hulls. Bioresource Technology, 2010, 101, 1014-1020.	9.6	36
56	Effect of heat-shock treatment on the survival of Escherichia coli O157:H7 and Salmonella enterica Typhimurium in dairy manure co-composted with vegetable wastes under field conditions. Bioresource Technology, 2010, 101, 5407-5413.	9.6	29
57	The growth potential of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in dairy manure-based compost in a greenhouse setting under different seasons. Journal of Applied Microbiology, 2010, 109, 2095-2104.	3.1	40
58	Thermal Inactivation of Heat-Shocked Escherichia coli O157:H7, and in Dairy Compost. Journal of Food Protection, 2010, 73, 1633-1640.	1.7	27
59	Use of a Mixture of Bacteriophages for Biological Control of <i>Salmonella enterica</i> Strains in Compost. Applied and Environmental Microbiology, 2010, 76, 5327-5332.	3.1	42
60	The Presence of Antibiotic Resistance and Integrons in <i>Escherichia coli</i> Isolated from Compost. Foodborne Pathogens and Disease, 2010, 7, 1297-1304.	1.8	11
61	Analysis of <i>Salmonella</i> and enterococci isolated from rendered animal products. Canadian Journal of Microbiology, 2010, 56, 65-73.	1.7	38
62	Factors Impacting the Regrowth of Escherichia coli O157:H7 in Dairy Manure Compost. Journal of Food Protection, 2009, 72, 1576-1584.	1.7	35
63	Antibacterial Effects of Grape Extracts on <i>Helicobacter pylori</i> . Applied and Environmental Microbiology, 2009, 75, 848-852.	3.1	70
64	Evaluating the Effect of Environmental Factors on Pathogen Regrowth in Compost Extract. Microbial Ecology, 2009, 58, 498-508.	2.8	38
65	Microbiological analysis of composts produced on South Carolina poultry farms. Journal of Applied Microbiology, 2009, 108, 2067-76.	3.1	31
66	Inactivation of Salmonella spp. in cow manure composts formulated to different initial C:N ratios. Bioresource Technology, 2009, 100, 5898-5903.	9.6	52
67	Pathogen Inactivation In Cow Manure Compost. Compost Science and Utilization, 2009, 17, 229-236.	1.2	22
68	Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluidics and Nanofluidics, 2008, 5, 571-583.	2.2	59
69	Prevalence of Antibiotic-Resistant Bacteria in Herbal Products. Journal of Food Protection, 2008, 71, 1486-1490.	1.7	22
70	Detection of <1>Listeria monocytogenes 1 in Biofilms Using Immunonanoparticles. Journal of Biomedical Nanotechnology, 2007, 3, 131-138.	1.1	13
71	Fate of Escherichia coli O157:H7 during On-Farm Dairy Manure–Based Composting. Journal of Food Protection, 2007, 70, 2708-2716.	1.7	64
72	Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. International Journal of Food Microbiology, 2007, 118, 132-138.	4.7	177

#	Article	IF	CITATIONS
73	Analysis of Fecal Microbial Flora for Antibiotic Resistance in Ceftiofur-Treated Calves. Foodborne Pathogens and Disease, 2006, 3, 355-365.	1.8	48
74	Preparation, Characterization, and Evaluation of Immuno Carbon Nanotubes. Mikrochimica Acta, 2006, 152, 249-254.	5.0	13
75	Carbon Nanotubes for Immunomagnetic Separation of Escherichia Coli O157:H7. Journal of Nanoscience and Nanotechnology, 2006, 6, 868-871.	0.9	13
76	Effects of various hand hygiene regimes on removal and/or destruction of Escherichia coli on hands. Journal of Foodservice, 2005, 5, 77-84.	1.5	16
77	Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiology, 2005, 22, 63-70.	4.2	152
78	Immuno-Carbon Nanotubes and Recognition of Pathogens. ChemBioChem, 2005, 6, 640-643.	2.6	74
79	Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chemical Communications, 2005, , 874.	4.1	129
80	Fate of Listeria monocytogenes in Bovine Manure–Amended Soil. Journal of Food Protection, 2004, 67, 1676-1681.	1.7	45
81	Fate of Salmonella enterica Serovar Typhimurium on Carrots and Radishes Grown in Fields Treated with Contaminated Manure Composts or Irrigation Water. Applied and Environmental Microbiology, 2004, 70, 2497-2502.	3.1	269
82	Thermal Inactivation of Escherichia coli O157:H7 in Cow Manure Compost. Journal of Food Protection, 2003, 66, 1771-1777.	1.7	35
83	Fate of Escherichia coli O157:H7 during Composting of Bovine Manure in a Laboratory-Scale Bioreactor. Journal of Food Protection, 2003, 66, 25-30.	1.7	72
84	Fate of Escherichia coli O157:H7 in Manure-Amended Soil. Applied and Environmental Microbiology, 2002, 68, 2605-2609.	3.1	304
85	Optimizing Enrichment Culture Conditions for Detecting Helicobacter pylori in Foods. Journal of Food Protection, 2002, 65, 1949-1954.	1.7	24
86	Growth Supplements for <i>Helicobacter pylori</i> . Journal of Clinical Microbiology, 2000, 38, 1984-1987.	3.9	41
87	The Role of Manure and Compost in Produce Safety. , 0, , 143-166.		4
88	Compositional and Functional Changes in Microbial Communities of Composts Due to the Composting-Related Factors and the Presence of Listeria monocytogenes. Microbiology Spectrum, 0, , .	3.0	4