
Katsuyoshi Ikeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competing characters of Li ⁺ â€Glyme complex in a solvate ionic liquid: High stability in the bulk and rapid desolvation on an electrode surface. Electrochemical Science Advances, 2022, 2, e2100150.	1.2	2
2	Surfaceâ€Enhanced Electronic Raman Scattering at Various Metal Surfaces. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	7
3	<i>In situ</i> mass analysis of surface reactions using surface-enhanced Raman spectroscopy covering a wide range of frequencies. Catalysis Science and Technology, 2022, 12, 2670-2676.	2.1	5
4	Longâ€range surface plasmon enhanced Raman spectroscopy at highly damping platinum electrodes. Journal of Raman Spectroscopy, 2021, 52, 420-430.	1.2	3
5	A rotating disk electrode study on catalytic activity of iron(II) phthalocyanine-modified electrodes for oxygen reduction in acidic media. Journal of Solid State Electrochemistry, 2021, 25, 141-147.	1.2	4
6	A single spectroscopic probe for <i>in situ</i> analysis of electronic and vibrational information at both sides of electrode/electrolyte interfaces using surface-enhanced Raman scattering. Journal of Chemical Physics, 2021, 155, 204702.	1.2	6
7	Origin of a High Overpotential of Co Electrodeposition in a Room-Temperature Ionic Liquid. Journal of Physical Chemistry Letters, 2020, 11, 8697-8702.	2.1	17
8	<i>In situ</i> surface-enhanced electronic and vibrational Raman scattering spectroscopy at metal/molecule interfaces. Nanoscale, 2020, 12, 22988-22994.	2.8	15
9	Atomistic Control of Metal–Molecule Junctions for Efficient Photo-Induced Uphill Charge Transfer. Journal of Physical Chemistry C, 2020, 124, 18173-18180.	1.5	10
10	Electronic and vibrational surface-enhanced Raman scattering: from atomically defined Au(111) and (100) to roughened Au. Chemical Science, 2020, 11, 9807-9817.	3.7	23
11	Direct Measurement of Electron Transfer Rates between Iron(II) Phthalocyanine and Gold with Different Interface Structures. ECS Meeting Abstracts, 2020, MA2020-02, 3658-3658.	0.0	0
12	Oxygen Reduction Reaction Activity of Iron (II) Phthalocyanine Monolayers in Acidic Media Studied Using a Rotating Disk Electrode Technique. ECS Meeting Abstracts, 2020, MA2020-02, 3659-3659.	0.0	0
13	Long-Range Surface Plasmon Enhanced Raman Spectroscopy at Catalytic Platinum Electrodes. ECS Meeting Abstracts, 2020, MA2020-02, 3041-3041.	0.0	0
14	In-Situ Electronic and Vibrational SERS Observation of Gold Electrodes Under Various pH Conditions. ECS Meeting Abstracts, 2020, MA2020-02, 3660-3660.	0.0	0
15	Visualization of subnanometric phonon modes in a plasmonic nano-cavity via ambient tip-enhanced Raman spectroscopy. Npj 2D Materials and Applications, 2019, 3, .	3.9	12
16	Potential-induced interfacial restructuring of a pyrrolidinium-based ionic liquid on an Au electrode: Effect of polarization of constituent ions. Electrochemistry Communications, 2019, 100, 117-120.	2.3	15
17	Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies. Chemical Science, 2019, 10, 6261-6269.	3.7	32
18	Low-frequency surface-enhanced Raman scattering spectroscopy at metal electrode surfaces. Current Opinion in Electrochemistry, 2019, 17, 143-148.	2.5	11

ΚΑΤSUYOSHI ΙΚΕDΑ

#	Article	IF	CITATIONS
19	Electrochemical and in situ SERS study of the role of an inhibiting additive in selective electrodeposition of copper in sulfuric acid. Electrochemistry Communications, 2019, 98, 19-22.	2.3	6
20	In-Situ Seiras Observation of Co Electrodeposition in an Ionic Liquid: Correlation between the Reaction and Interfacial Restructuring. ECS Meeting Abstracts, 2019, , .	0.0	0
21	In-Situ Ultra-Low Frequency SERS Observation at Electrified Interfaces. ECS Meeting Abstracts, 2019, , .	0.0	0
22	Surface Enhanced Raman Scattering. , 2018, , 661-665.		0
23	Electrical Matching at Metal/Molecule Contacts for Efficient Heterogeneous Charge Transfer. ACS Nano, 2018, 12, 1228-1235.	7.3	13
24	Gap-Mode Raman Spectroscopy. , 2018, , 205-209.		0
25	THz SERS Observation of Benzenethiol Monolayers on Electrode Surfaces. ECS Meeting Abstracts, 2018, , .	0.0	Ο
26	Electrochemical THz-SERS Observation of Thiol Monolayers on Au(111) and (100) Using Nanoparticle-assisted Gap-Mode Plasmon Excitation. Journal of Physical Chemistry Letters, 2017, 8, 4236-4240.	2.1	29
27	In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 27570-27579.	1.3	33
28	Electrochemical SERS observation of molecular adsorbates on Ru/Pt-modified Au(111) surfaces using sphere-plane type gap-mode plasmon excitation. Journal of Electroanalytical Chemistry, 2017, 800, 151-155.	1.9	10
29	In-Situ THz SERS Observation of Electrochemical Processes. ECS Meeting Abstracts, 2017, , .	0.0	0
30	(Invited) Plasmonic Enhancement of Single- and Multi-Electron Transfer Reactions on Modified Electrodes. ECS Meeting Abstracts, 2017, , .	0.0	0
31	Plasmon Enhanced Raman Scattering from Molecular Adsorbates on Atomically Defined Planar Metal Surfaces. ACS Symposium Series, 2016, , 41-55.	0.5	0
32	Photoelectrochemical Behavior of Homo- and Heterodimers of Metalloporphyrins. Chemistry Letters, 2016, 45, 125-127.	0.7	3
33	Nanostructuring of Molecular Assembly Using Electrochemical Reductive Desorption of Locally Stabilized Thiol Monolayers. Journal of Physical Chemistry C, 2016, 120, 15823-15829.	1.5	6
34	Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics. Journal of the American Chemical Society, 2016, 138, 1294-1300.	6.6	88
35	Kinetic Behavior of Catalytic Active Sites Connected with a Conducting Surface through Various Electronic Coupling. Journal of Physical Chemistry C, 2016, 120, 2159-2165.	1.5	11
36	Vibrational Spectroscopic Observation of Atomic-Scale Local Surface Sites Using Site-Selective Signal Enhancement. Nano Letters, 2015, 15, 7982-7986.	4.5	25

#	Article	IF	CITATIONS
37	Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays. ACS Photonics, 2015, 2, 66-72.	3.2	13

38 4.æ§‹é€è¦å°¶é‡'属èj¨é¢ã«ãŠãʿã,‹åç€å^†åã@ãf—ãf©ã,ºãf¢ãf³å¢—å¼·ãf©ãfžãf³æ•£ä¹±è¨æ,¬. Electrochemiotoy, 2015983, 112-1

39	Nanoscale Optical and Mechanical Manipulation of Molecular Alignment in Metal–Molecule–Metal Structures. Journal of Physical Chemistry C, 2014, 118, 21550-21557.	1.5	22
40	Effects of Atomic Geometry and Electronic Structure of Platinum Surfaces on Molecular Adsorbates Studied by Gap-Mode SERS. Journal of the American Chemical Society, 2014, 136, 10299-10307.	6.6	80
41	Plasmonically Nanoconfined Light Probing Invisible Phonon Modes in Defect-Free Graphene. Journal of the American Chemical Society, 2013, 135, 11489-11492.	6.6	27
42	Effect of surface treatment with different sulfide solutions on the ultrafast dynamics of photogenerated carriers in GaAs(100). Applied Surface Science, 2013, 267, 185-188.	3.1	12
43	Enhancement of SERS Background through Charge Transfer Resonances on Single Crystal Gold Surfaces of Various Orientations. Journal of the American Chemical Society, 2013, 135, 17387-17392.	6.6	64
44	Selective dehybridization of DNA–Au nanoconjugates using laser irradiation. Physical Chemistry Chemical Physics, 2013, 15, 15995.	1.3	19
45	Surface optimization of optical antennas for plasmonic enhancement of photoelectrochemical reactions. Electrochimica Acta, 2013, 112, 864-868.	2.6	5
46	Single Molecule Dynamics at a Mechanically Controllable Break Junction in Solution at Room Temperature. Journal of the American Chemical Society, 2013, 135, 1009-1014.	6.6	138
47	Structural Tuning of Optical Antenna Properties for Plasmonic Enhancement of Photocurrent	1.5	29
	Generation on a Molecular Monolayer System. Journal of Physical Chemistry C, 2012, 116, 20806-20811.	1.5	27
48	Generation on a Molecular Monolayer System. Journal of Physical Chemistry C, 2012, 116, 20806-20811. Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2012, 220, 20-30.	4.0	21
	Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. Journal of Power		
48	Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2012, 220, 20-30. Optical Antenna for Photofunctional Molecular Systems. Chemistry - A European Journal, 2012, 18,	4.0	21
48 49	Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2012, 220, 20-30. Optical Antenna for Photofunctional Molecular Systems. Chemistry - A European Journal, 2012, 18, 1564-1570.	4.0	21 6
48 49 50	 Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2012, 220, 20-30. Optical Antenna for Photofunctional Molecular Systems. Chemistry - A European Journal, 2012, 18, 1564-1570. Nonlinear Raman Scattering Spectroscopy for Carbon Nanomaterials. , 2012, , 99-118. Crystal Face Dependent Chemical Effects in Surface-Enhanced Raman Scattering at Atomically Defined 	4.0	21 6 1
48 49 50 51	 Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2012, 220, 20-30. Optical Antenna for Photofunctional Molecular Systems. Chemistry - A European Journal, 2012, 18, 1564-1570. Nonlinear Raman Scattering Spectroscopy for Carbon Nanomaterials. , 2012, , 99-118. Crystal Face Dependent Chemical Effects in Surface-Enhanced Raman Scattering at Atomically Defined Cold Facets. Nano Letters, 2011, 11, 1716-1722. Spectroscopy and Photoelectrochemistry of Organic Monolayers within Sphere-Plane Gold 	4.0 1.7 4.5	21 6 1 98

Katsuyoshi Ikeda

#	Article	IF	CITATIONS
55	Plasmon-Assisted Spectroscopy and Photochemistry at Well-Defined Metal-molecular Interfaces. Molecular Science, 2011, 5, A0040.	0.2	Ο
56	Effect of Coating by Perfluorosulfonated Ionomer Film on Electrochemical Behaviors of Pt(111) Electrode in Acidic Solutions. Chemistry Letters, 2010, 39, 286-287.	0.7	10
57	Gap-mode SERS studies of azobenzene-containing self-assembled monolayers on Au(111). Journal of Colloid and Interface Science, 2010, 341, 366-375.	5.0	31
58	Substrate dependent structure of adsorbed aryl isocyanides studied by sum frequency generation (SFG) spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 3156.	1.3	35
59	Coherent Phonon Dynamics in Single-Walled Carbon Nanotubes Studied by Time-Frequency Two-Dimensional Coherent Anti-Stokes Raman Scattering Spectroscopy. Nano Letters, 2009, 9, 1378-1381.	4.5	25
60	Plasmonic Enhancement of Raman Scattering on Non-SERS-Active Platinum Substrates. Journal of Physical Chemistry C, 2009, 113, 11816-11821.	1.5	72
61	Raman scattering of aryl isocyanide monolayers on atomically flat Au(1 1 1) single crystal surfaces enhanced by gap-mode plasmon excitation. Chemical Physics Letters, 2008, 460, 205-208.	1.2	91
62	Resonance Hyper-Raman Scattering of Fullerene C60 Microcrystals. Journal of Physical Chemistry A, 2008, 112, 790-793.	1.1	28
63	Hyper-Raman scattering enhanced by anisotropic dimer plasmons on artificial nanostructures. Journal of Chemical Physics, 2007, 127, 111103.	1.2	38
64	Focused Excitation of Surface Plasmon Polaritons Based on Gap-Mode in Tip-Enhanced Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, 7995.	0.8	21
65	Resonant hyper-Raman scattering from carbon nanotubes. Chemical Physics Letters, 2007, 438, 109-112.	1.2	16
66	Study of chirality and photo-induced chirality in cobaloxime complex crystals. Chemical Physics Letters, 2006, 422, 267-270.	1.2	5
67	Photo-induced chirality switching in a cobaloxime complex crystal. Journal of Chemical Physics, 2005, 122, 141103.	1.2	17
68	Magnetization-induced second- and third-harmonic generation in transparent magnetic films. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 196.	0.9	20
69	Magnetization-induced second-harmonic generation in electrochemically synthesized magnetic films of ternary metal Prussian blue analogs. Journal of Applied Physics, 2003, 93, 1371-1375.	1.1	30
70	ãf—ãf«ã,•ã,¢ãf³ãf–ãf«ãf¼é¡žä¼¼ä½"ã«ãŠãʿã,‹å¼·ç£œ€§ã•2次å‰å¦éžç·šå½¢æ€§ã®å±å≈. Electroche	emi str y, 20	03271, 184-1
71	Second Harmonic Generation in Electrochemically Synthesized Films of Ternary Metal Prussian Blue	19	17

/1	Analogs. Journal of the Electrochemical Society, 2002, 149, E445.	1.0	17	
72	Second harmonic generation from ternary metal Prussian blue analog films in paramagnetic and ferromagnetic regions. Chemical Physics Letters, 2001, 349, 371-375.	1.2	39	

ΚΑΤSUYOSHI ΙΚΕDΑ

#	Article	IF	CITATIONS
73	Microscopic Observation of TiO2Photocatalysis Using Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 1999, 103, 3213-3217.	1.2	42
74	Photocatalytic Reactions Involving Radical Chain Reactions Using Microelectrodesâ€. Journal of Physical Chemistry B, 1997, 101, 2617-2620.	1.2	117
75	Comparative studies on the photocatalytic decomposition of ethanol and acetaldehyde in water containing dissolved oxygen using a microelectrode technique. Journal of Electroanalytical Chemistry, 1997, 437, 241-244.	1.9	21
76	Microscopic Observation of Photocatalytic Reaction Using Microelectrode: Spatial Resolution for Reaction Products Distribution. Chemistry Letters, 1995, 24, 979-980.	0.7	7