List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954462/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks.<br>Science Advances, 2021, 7, .                                                                                      | 10.3 | 21        |
| 2  | Xrn1p acts at multiple steps in the budding-yeast RNAi pathway to enhance the efficiency of silencing.<br>Nucleic Acids Research, 2020, 48, 7404-7420.                                                                 | 14.5 | 3         |
| 3  | A Morgan Legacy. Genetics, 2020, 216, 611-612.                                                                                                                                                                         | 2.9  | 0         |
| 4  | m6A modification of a 3′ UTR site reduces RME1 mRNA levels to promote meiosis. Nature<br>Communications, 2019, 10, 3414.                                                                                               | 12.8 | 53        |
| 5  | Complex modifier landscape underlying genetic background effects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5045-5054.                                               | 7.1  | 41        |
| 6  | Excised linear introns regulate growth in yeast. Nature, 2019, 565, 606-611.                                                                                                                                           | 27.8 | 118       |
| 7  | Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes.<br>Metabolic Engineering, 2019, 51, 20-31.                                                                        | 7.0  | 22        |
| 8  | New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi. MSphere, 2018,<br>3, .                                                                                                            | 2.9  | 87        |
| 9  | Rapid capture and labeling of cells on single domain antibodies-functionalized flow cell. Biosensors and Bioelectronics, 2017, 89, 789-794.                                                                            | 10.1 | 6         |
| 10 | A <i>Candida albicans</i> CRISPR system permits genetic engineering of essential genes and gene<br>families. Science Advances, 2015, 1, e1500248.                                                                      | 10.3 | 291       |
| 11 | Engineering alcohol tolerance in yeast. Science, 2014, 346, 71-75.                                                                                                                                                     | 12.6 | 193       |
| 12 | Interactions between chromosomal and nonchromosomal elements reveal missing heritability.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7719-7722.                    | 7.1  | 37        |
| 13 | In Memoriam Fred Sherman—The First Yeast Molecular Biologist. Genetics, 2014, 196, 363-364.                                                                                                                            | 2.9  | 1         |
| 14 | Science diplomacy with Cuba. Science, 2014, 344, 1065-1065.                                                                                                                                                            | 12.6 | 11        |
| 15 | High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA Methylation Program in<br>Yeast Meiosis. Cell, 2013, 155, 1409-1421.                                                                             | 28.9 | 554       |
| 16 | RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast. PLoS Genetics, 2012, 8, e1002732.                                                                                                          | 3.5  | 207       |
| 17 | Genes come and go. RNA Biology, 2012, 9, 1123-1128.                                                                                                                                                                    | 3.1  | 6         |
| 18 | <i>Candida albicans</i> Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA<br>maturation. Proceedings of the National Academy of Sciences of the United States of America, 2012,<br>109. 523-528. | 7.1  | 47        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Genetic Variation in <i>Saccharomyces cerevisiae</i> : Circuit Diversification in a Signal Transduction Network. Genetics, 2012, 192, 1523-1532.                                                                                                   | 2.9  | 36        |
| 20 | Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14, 611-622. | 7.0  | 250       |
| 21 | Ruler Arrays Reveal Haploid Genomic Structural Variation. PLoS ONE, 2012, 7, e43210.                                                                                                                                                               | 2.5  | Ο         |
| 22 | Compatibility with Killer Explains the Rise of RNAi-Deficient Fungi. Science, 2011, 333, 1592-1592.                                                                                                                                                | 12.6 | 194       |
| 23 | Yeast: An Experimental Organism for 21st Century Biology. Genetics, 2011, 189, 695-704.                                                                                                                                                            | 2.9  | 450       |
| 24 | Feed-Forward Regulation of a Cell Fate Determinant by an RNA-Binding Protein Generates Asymmetry in<br>Yeast. Genetics, 2010, 185, 513-522.                                                                                                        | 2.9  | 32        |
| 25 | Control of Transcription by Cell Size. PLoS Biology, 2010, 8, e1000523.                                                                                                                                                                            | 5.6  | 108       |
| 26 | Genotype to Phenotype: A Complex Problem. Science, 2010, 328, 469-469.                                                                                                                                                                             | 12.6 | 358       |
| 27 | Toggle involving <i>cis</i> -interfering noncoding RNAs controls variegated gene expression in yeast.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>18321-18326.                               | 7.1  | 174       |
| 28 | Getting Along with a Little Help from My Friends. Journal of Biological Chemistry, 2009, 284, 23885-23890.                                                                                                                                         | 3.4  | 2         |
| 29 | RNAi in Budding Yeast. Science, 2009, 326, 544-550.                                                                                                                                                                                                | 12.6 | 480       |
| 30 | Antisense Transcription Controls Cell Fate in Saccharomyces cerevisiae. Cell, 2006, 127, 735-745.                                                                                                                                                  | 28.9 | 327       |
| 31 | Feedback control of morphogenesis in fungi by aromatic alcohols. Genes and Development, 2006, 20, 1150-1161.                                                                                                                                       | 5.9  | 388       |
| 32 | Intragenic tandem repeats generate functional variability. Nature Genetics, 2005, 37, 986-990.                                                                                                                                                     | 21.4 | 556       |
| 33 | A Transforming Principle. Cell, 2005, 120, 153-154.                                                                                                                                                                                                | 28.9 | 15        |
| 34 | Defects Arising From Whole-Genome Duplications in Saccharomyces cerevisiae. Genetics, 2004, 167, 1109-1121.                                                                                                                                        | 2.9  | 79        |
| 35 | Genetic and Epigenetic Regulation of the FLO Gene Family Generates Cell-Surface Variation in Yeast.<br>Cell, 2004, 116, 405-415.                                                                                                                   | 28.9 | 335       |
| 36 | Arabidopsis <i>ALF5</i> , a Multidrug Efflux Transporter Gene Family Member, Confers Resistance to Toxins. Plant Cell, 2001, 13, 1625-1638.                                                                                                        | 6.6  | 174       |

| #  | Article                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Polyploids require Bik1 for kinetochore–microtubule attachment. Journal of Cell Biology, 2001, 155,<br>1173-1184.                              | 5.2  | 98        |
| 38 | STEROL METHYLTRANSFERASE 1 Controls the Level of Cholesterol in Plants. Plant Cell, 2000, 12, 853-870.                                         | 6.6  | 257       |
| 39 | Ploidy Regulation of Gene Expression. Science, 1999, 285, 251-254.                                                                             | 12.6 | 608       |
| 40 | The control of filamentous differentiation and virulence in fungi. Trends in Cell Biology, 1998, 8, 348-353.                                   | 7.9  | 269       |
| 41 | Dissection of Filamentous Growth by Transposon Mutagenesis in <i>Saccharomyces cerevisiae</i> .<br>Genetics, 1997, 145, 671-684.               | 2.9  | 233       |
| 42 | <i>Saccharomyces cerevisiae</i> S288C Has a Mutation in <i>FL08</i> , a Gene Required for Filamentous<br>Growth. Genetics, 1996, 144, 967-978. | 2.9  | 382       |
| 43 | Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS. Cell, 1992, 68, 1077-1090.    | 28.9 | 1,202     |
| 44 | Barbara McClintock(1902–1992). Nature, 1992, 359, 272-272.                                                                                     | 27.8 | 1         |
| 45 | FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation.<br>Cell, 1990, 60, 649-664.               | 28.9 | 481       |
| 46 | KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell, 1987, 48, 1047-1060.                     | 28.9 | 404       |
| 47 | Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and<br>Ca2+-ATPases. Nature, 1986, 319, 689-693.    | 27.8 | 823       |
| 48 | Ty elements transpose through an RNA intermediate. Cell, 1985, 40, 491-500.                                                                    | 28.9 | 906       |
| 49 | Ty element transposition: Reverse transcriptase and virus-like particles. Cell, 1985, 42, 507-517.                                             | 28.9 | 367       |
| 50 | The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell, 1984, 39, 675-682.                                   | 28.9 | 240       |
| 51 | MUTATIONS AFFECTING TY-MEDIATED EXPRESSION OF THE <i>HIS4</i> GENE OF <i>SACCHAROMYCES CEREVISIAE</i> . Genetics, 1984, 107, 179-197.          | 2.9  | 383       |
| 52 | A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast.<br>Cell, 1983, 32, 89-98.                  | 28.9 | 312       |
| 53 | The nucleotide sequence of the HIS4 region of yeast. Gene, 1982, 18, 47-59.                                                                    | 2.2  | 269       |
| 54 | DNA rearrangements associated with a transposable element in yeast. Cell, 1980, 21, 239-249.                                                   | 28.9 | 366       |

| #  | Article                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. Journal of<br>Molecular Biology, 1975, 96, 273-290. | 4.2 | 281       |
| 56 | Histidine regulatory mutants in salmonella typhimurium. Journal of Molecular Biology, 1967, 30, 81-95.                                      | 4.2 | 103       |
| 57 | Translation and polarity in the histidine operon. Journal of Molecular Biology, 1967, 30, 97-107.                                           | 4.2 | 61        |
| 58 | Histidine regulatory mutants in Salmonella typhimurium. Journal of Molecular Biology, 1966, 22,<br>335-347.                                 | 4.2 | 174       |
| 59 | A CLUSTER OF GENES CONTROLLING THREE ENZYMES IN HISTIDINE BIOSYNTHESIS IN <i>SACCHAROMYCES CEREVISIAE</i> . Genetics, 1966, 53, 445-459.    | 2.9 | 129       |