
Tao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cost-Effective Reduced Graphene Oxide-Coated Polyurethane Sponge As a Highly Efficient and Reusable Oil-Absorbent. ACS Applied Materials & Interfaces, 2013, 5, 10018-10026.	4.0	404
2	An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity. Journal of Hazardous Materials, 2013, 260, 796-805.	6.5	204
3	Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. Journal of Materials Chemistry A, 2013, 1, 7612.	5.2	184
4	Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydrate Polymers, 2014, 101, 392-400.	5.1	173
5	Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization. Soft Matter, 2011, 7, 7231.	1.2	165
6	Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites. Journal of Physical Chemistry B, 2016, 120, 5534-5542.	1.2	145
7	Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites. Combustion and Flame, 2019, 201, 181-186.	2.8	127
8	Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2013, 1, 7384.	5.2	126
9	Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. Journal of Materials Chemistry, 2012, 22, 4772.	6.7	123
10	Robust Superhydrophobic Sepiolite-Coated Polyurethane Sponge for Highly Efficient and Recyclable Oil Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 5560-5567.	3.2	87
11	Reduction of graphene oxide with l-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. Journal of Materials Chemistry A, 2013, 1, 2192-2201.	5.2	78
12	Direct Writing of a 90 wt% Particle Loading Nanothermite. Advanced Materials, 2019, 31, e1806575.	11.1	63
13	A two step method to synthesize palladium–copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. Journal of Power Sources, 2015, 288, 160-167.	4.0	62
14	Factors that affect the stability, type and morphology of Pickering emulsion stabilized by silver nanoparticles/graphene oxide nanocomposites. Materials Research Bulletin, 2014, 60, 118-129.	2.7	61
15	Adsorption and Destruction of the G-Series Nerve Agent Simulant Dimethyl Methylphosphonate on Zinc Oxide. ACS Catalysis, 2019, 9, 902-911.	5.5	54
16	Boron ignition and combustion with doped \hat{I}^{*} Bi2O3: Bond energy/oxygen vacancy relationships. Combustion and Flame, 2018, 197, 127-133.	2.8	48
17	Redox reaction between graphene oxide and In powder to prepare In2O3/reduced graphene oxide hybrids for supercapacitors. Journal of Power Sources, 2014, 266, 282-290.	4.0	47
18	Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities. Nanotechnology, 2013, 24, 125301.	1.3	43

Tao Wu

#	Article	IF	CITATIONS
19	Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films. Combustion and Flame, 2020, 211, 260-269.	2.8	39
20	Combustion of 3D printed 90Âwt% loading reinforced nanothermite. Combustion and Flame, 2020, 215, 86-92.	2.8	39
21	Titanium enhanced ignition and combustion of Al/I2O5 mesoparticle composites. Combustion and Flame, 2020, 212, 245-251.	2.8	37
22	Architecture Can Significantly Alter the Energy Release Rate from Nanocomposite Energetics. ACS Applied Polymer Materials, 2019, 1, 982-989.	2.0	36
23	Mesoporous Silica Spheres Incorporated Aluminum/Poly (Vinylidene Fluoride) for Enhanced Burning Propellants. Advanced Engineering Materials, 2018, 20, 1700547.	1.6	34
24	New coordination complexes-based gas-generating energetic composites. Combustion and Flame, 2020, 219, 478-487.	2.8	31
25	Aerosol synthesis of phase pure iodine/iodic biocide microparticles. Journal of Materials Research, 2017, 32, 890-896.	1.2	28
26	Performance of iodine oxides/iodic acids as oxidizers in thermite systems. Combustion and Flame, 2018, 191, 335-342.	2.8	28
27	Platinum nano-catalysts deposited on reduced graphene oxides for alcohol oxidation. Electrochimica Acta, 2013, 111, 614-620.	2.6	27
28	A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles. Nanotechnology, 2013, 24, 215604.	1.3	27
29	Biodegradable amylose films reinforced by graphene oxide and polyvinyl alcohol. Materials Chemistry and Physics, 2013, 142, 1-11.	2.0	26
30	Unexpected enhanced reactivity of aluminized nanothermites by accelerated aging. Chemical Engineering Journal, 2021, 418, 129432.	6.6	26
31	Doped Perovskites To Evaluate the Relationship between Fuel–Oxidizer Thermite Ignition and Bond Energy, Electronegativity, and Oxygen Vacancy. Journal of Physical Chemistry C, 2017, 121, 147-152.	1.5	21
32	Grafting of graphene oxide with poly(sodium 4-styrenesulfonate) by atom transfer radical polymerization. Materials Chemistry and Physics, 2013, 138, 434-439.	2.0	19
33	Carbon addition lowers initiation and iodine release temperatures from iodine oxide-based biocidal energetic materials. Carbon, 2018, 130, 410-415.	5.4	19
34	Fabrication of graphene oxide aerogels loaded with catalytic AuPd nanoparticles. Materials Research Bulletin, 2015, 63, 248-252.	2.7	18
35	Growth of Sub-5 nm Metal Nanoclusters in Polymer Melt Aerosol Droplets. Langmuir, 2018, 34, 585-594.	1.6	17
36	Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization. Materials Research Bulletin, 2014, 60, 576-583.	2.7	15

TAO WU

#	Article	IF	CITATIONS
37	Self-Assembly Method To Fabricate Reduced Graphene Oxide Aerogels Loaded with Nickel Hydroxyl Nanoparticles and Their Excellent Properties in Absorbing and Supercapacitors. Industrial & Engineering Chemistry Research, 2016, 55, 6553-6562.	1.8	15
38	One-step solvent-free mechanochemical synthesis of metal iodate fine powders. Powder Technology, 2018, 324, 62-68.	2.1	15
39	Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability. Journal of Alloys and Compounds, 2015, 628, 364-371.	2.8	14
40	Influence of titanium addition on performance of boron-based thermites. Chemical Engineering Journal, 2022, 438, 134837.	6.6	14
41	Silver ferrite: a superior oxidizer for thermite-driven biocidal nanoenergetic materials. RSC Advances, 2019, 9, 1831-1840.	1.7	13
42	A Robust Superhydrophobic Polyurethane Sponge Loaded with Multi-Walled Carbon Nanotubes for Efficient and Selective Oil-Water Separation. Nanomaterials, 2021, 11, 3344.	1.9	13
43	Effect of Process Parameters on the Properties of Direct Written Gas-Generating Reactive Layers. ACS Applied Polymer Materials, 2021, 3, 3972-3980.	2.0	10
44	On-the-fly green generation and dispersion of Agl nanoparticles for cloud seeding nuclei. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	9
45	Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates. Journal of Applied Physics, 2017, 122, 245901.	1.1	9
46	Reduction of Graphene Oxide with Ni Powder for the Preparation of Ni(OH) ₂ /Reduced Graphene Oxide Hybrid Electrodes for Supercapacitors. Science of Advanced Materials, 2015, 7, 269-277.	0.1	9
47	A polyaniline/graphene nanocomposite prepared by in situ polymerization of polyaniline onto polyanion grafted graphene and its electrochemical properties. RSC Advances, 2014, 4, 7673-7681.	1.7	8
48	Enhanced reactivity of copper complex-based reactive materials via mechanical milling. Combustion and Flame, 2021, 233, 111598.	2.8	8
49	Engineered Porosity-Induced Burn Rate Enhancement in Dense Al/CuO Nanothermites. ACS Applied Energy Materials, 2022, 5, 3189-3198.	2.5	8
50	Crystal structure of a new polymorph of iodic acid, <i>δ</i> -HIO ₃ , from powder diffraction. Powder Diffraction, 2017, 32, 261-264.	0.4	5
51	Reduced Graphene Oxide Produced by a Green Reduction Method and Its Application in Cu ² <i>⁺</i> Adsorption for Catalyzing the Reduction of 4-Nitrophenol. Science of Advanced Materials, 2014, 6, 1869-1881.	0.1	0