
Daniel K Howe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954390/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Equine Protozoal Myeloencephalitis. Veterinary Clinics of North America Equine Practice, 2022, 38, 249-268.	0.7	3
2	Transcriptional dynamics in the protozoan parasite Sarcocystis neurona and mammalian host cells after treatment with a specific inhibitor of apicomplexan mRNA polyadenylation. PLoS ONE, 2021, 16, e0259109.	2.5	4
3	Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 269.	3.9	46
4	Ascarids exposed: a method for <i>in vitro</i> drug exposure and gene expression analysis of anthelmintic naìve <i>Parascaris</i> spp. Parasitology, 2020, 147, 659-666.	1.5	7
5	Histologically, immunohistochemically, ultrastructurally, and molecularly confirmed neosporosis abortion in an aborted equine fetus. Veterinary Parasitology, 2019, 270, 20-24.	1.8	7
6	Molecular Genetic Manipulation of <i>Sarcocystis neurona</i> . Current Protocols in Microbiology, 2018, 48, 20D.2.1-20D.2.14.	6.5	4
7	Characterization of mRNA polyadenylation in the apicomplexa. PLoS ONE, 2018, 13, e0203317.	2.5	21
8	Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 1359-1365.	3.0	6
9	Extended-spectrum antiprotozoal bumped kinase inhibitors: A review. Experimental Parasitology, 2017, 180, 71-83.	1.2	71
10	Antibodies Against Sarcocystis neurona , Neospora spp., and Toxoplasma gondii in Horses and Mules From the Northern Pantanal Wetland of Brazil. Journal of Equine Veterinary Science, 2017, 56, 19-25.	0.9	8
11	Sarcocystis neurona manipulation using culture-derived merozoites for bradyzoite and sporocyst production. Veterinary Parasitology, 2017, 238, 35-42.	1.8	2
12	Small sarcocysts can be a feature of experimental infections with Sarcocystis neurona merozoites. Veterinary Parasitology, 2017, 245, 116-118.	1.8	2
13	Testing the Sarcocystis neurona vaccine using an equine protozoal myeloencephalitis challenge model. Veterinary Parasitology, 2017, 247, 37-41.	1.8	5
14	A serosurvey of selected cystogenic coccidia in Spanish equids: first detection of anti-Besnoitia spp. specific antibodies in Europe. BMC Veterinary Research, 2017, 13, 128.	1.9	14
15	Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and <i>Sarcocystis neurona</i> Development. MSphere, 2017, 2, .	2.9	71
16	Seroepidemiology of <i>Sarcocystis neurona</i> and <i>Neospora hughesi</i> infections in domestic donkeys (<i>Equus asinus</i>) in Durango, Mexico. Parasite, 2017, 24, 27.	2.0	5
17	Equine antibody response to larval Parascaris equorum excretory-secretory products. Veterinary Parasitology, 2016, 226, 83-87.	1.8	5
18	Equine Protozoal Myeloencephalitis: An Updated Consensus Statement with a Focus on Parasite Biology, Diagnosis, Treatment, and Prevention. Journal of Veterinary Internal Medicine, 2016, 30, 491-502.	1.6	72

#	Article	IF	CITATIONS
19	Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy. International Journal for Parasitology, 2016, 46, 871-880.	3.1	22
20	Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nature Communications, 2016, 7, 10147.	12.8	243
21	Diagnosis of Equine Protozoal Myeloencephalitis Using Indirect Fluorescent Antibody Testing and Enzyme-Linked Immunosorbent Assay Titer Ratios for Sarcocystis neurona and Neospora hughesi. Journal of Equine Veterinary Science, 2016, 36, 49-51.	0.9	3
22	An update on Sarcocystis neurona infections in animals and equine protozoal myeloencephalitis (EPM). Veterinary Parasitology, 2015, 209, 1-42.	1.8	71
23	Systems-Based Analysis of the <i>Sarcocystis neurona</i> Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle. MBio, 2015, 6, .	4.1	49
24	Sarcocyst Development in Raccoons (Procyon lotor) Inoculated with Different Strains ofSarcocystis neuronaCulture–Derived Merozoites. Journal of Parasitology, 2015, 101, 462-467.	0.7	4
25	A new trivalent SnSAG surface antigen chimera for efficient detection of antibodies against Sarcocystis neurona and diagnosis of equine protozoal myeloencephalitis. Journal of Veterinary Diagnostic Investigation, 2015, 27, 377-381.	1.1	10
26	Purine salvage in the apicomplexan <i>Sarcocystis neurona</i> , and generation of hypoxanthine-xanthine-guanine phosphoribosyltransferase-deficient clones for positive-negative selection of transgenic parasites. Parasitology, 2014, 141, 1399-1405.	1.5	6
27	Equine Protozoal Myeloencephalitis. Veterinary Clinics of North America Equine Practice, 2014, 30, 659-675.	0.7	57
28	In vitro culture of Parascaris equorum larvae and initial investigation of parasite excretory-secretory products. Parasitology Research, 2014, 113, 4217-4224.	1.6	15
29	Seroprevalence of Sarcocystis neurona and Its Association With Neurologic Disorders in Argentinean Horses. Journal of Equine Veterinary Science, 2014, 34, 1051-1054.	0.9	9
30	<scp>kdetrees</scp> : non-parametric estimation of phylogenetic tree distributions. Bioinformatics, 2014, 30, 2280-2287.	4.1	44
31	SvSXP: a Strongylus vulgaris antigen with potential for prepatent diagnosis. Parasites and Vectors, 2013, 6, 84.	2.5	40
32	Recent advances in diagnosing pathogenic equine gastrointestinal helminths: The challenge of prepatent detection. Veterinary Parasitology, 2013, 192, 1-9.	1.8	37
33	Serum Antibodies from a Subset of Horses Positive for Babesia caballi by Competitive Enzyme-Linked Immunosorbent Assay Demonstrate a Protein Recognition Pattern That Is Not Consistent with Infection. Vaccine Journal, 2013, 20, 1752-1757.	3.1	8
34	Accurate Antemortem Diagnosis of Equine Protozoal Myeloencephalitis (<scp>EPM</scp>) Based on Detecting Intrathecal Antibodies against <i>Sarcocystis neurona</i> Using the Sn <scp>SAG</scp> 2 and Sn <scp>SAG</scp> 4/3 <scp>ELISA</scp> s. Journal of Veterinary Internal Medicine, 2013, 27, 1193-1200.	1.6	38
35	Prevalence of antibodies to <i>Sarcocystis neurona</i> and <i>Neospora hughesi</i> in horses from Mexico. Parasite, 2013, 20, 29.	2.0	11
36	Reactive Oxygen Species Production and Brugia pahangi Survivorship in Aedes polynesiensis with Artificial Wolbachia Infection Types. PLoS Pathogens, 2012, 8, e1003075.	4.7	44

#	Article	IF	CITATIONS
37	Exposure to Sarcocystis spp. in horses from Spain determined by Western blot analysis using Sarcocystis neurona merozoites as heterologous antigen. Veterinary Parasitology, 2012, 185, 301-304.	1.8	11
38	Antibody Coefficients for the Diagnosis of Equine Protozoal Myeloencephalitis. Journal of Veterinary Internal Medicine, 2011, 25, 138-142.	1.6	33
39	The SnSAG merozoite surface antigens of Sarcocystis neurona are expressed differentially during the bradyzoite and sporozoite life cycle stages. Veterinary Parasitology, 2011, 183, 37-42.	1.8	5
40	Improved detection of equine antibodies against Sarcocystis neurona using polyvalent ELISAs based on the parasite SnSAG surface antigens. Veterinary Parasitology, 2011, 176, 16-22.	1.8	21
41	Detection of Antibodies Against Sarcocystis neurona, Neospora spp., and Toxoplasma gondii in Horses From Costa Rica. Journal of Parasitology, 2011, 97, 522-524.	0.7	35
42	Use of a reverse line blot assay to survey small strongyle (Strongylida: Cyathostominae) populations in horses before and after treatment with ivermectin. Veterinary Parasitology, 2010, 168, 332-337.	1.8	24
43	The heptanucleotide motif GAGACGC is a key component of a cis-acting promoter element that is critical for SnSAG1 expression in Sarcocystis neurona. Molecular and Biochemical Parasitology, 2009, 166, 85-88.	1.1	4
44	Incidental isolation of Setaria equina microfilariae in preparations of equine peripheral blood mononuclear cells. Veterinary Parasitology, 2009, 161, 142-145.	1.8	4
45	Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites. Veterinary Parasitology, 2008, 152, 210-219.	1.8	2
46	SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1. Veterinary Parasitology, 2008, 158, 36-43.	1.8	15
47	Strains of Sarcocystis neurona exhibit differences in their surface antigens, including the absence of the major surface antigen SnSAG1. International Journal for Parasitology, 2008, 38, 623-631.	3.1	29
48	The Apicomplexan Pathogen Neospora caninum Inhibits Host Cell Apoptosis in the Absence of Discernible NF-κB Activation. Infection and Immunity, 2007, 75, 4255-4262.	2.2	20
49	Neospora caninum antibodies detected in Midwestern white-tailed deer (Odocoileus virginianus) by Western blot and ELISA. Veterinary Parasitology, 2007, 145, 152-155.	1.8	21
50	Prevalence of Sarcocystis neurona and Neospora spp. infection in horses from Brazil based on presence of serum antibodies to parasite surface antigen. Veterinary Parasitology, 2006, 136, 155-159.	1.8	62
51	Prevalence of antibodies to Encephalitozoon cuniculi in horses from Brazil. Veterinary Parasitology, 2006, 142, 380-382.	1.8	16
52	Identification of a dithiol-dependent nucleoside triphosphate hydrolase in Sarcocystis neurona. International Journal for Parasitology, 2006, 36, 1197-1204.	3.1	7
53	Molecular genetic transfection of the coccidian parasite Sarcocystis neurona. Molecular and Biochemical Parasitology, 2006, 150, 1-9.	1.1	22
54	Plastid segregation and cell division in the apicomplexan parasite Sarcocystis neurona. Journal of Cell Science, 2005, 118, 3397-3407.	2.0	65

#	Article	IF	CITATIONS
55	RECOMBINANT NhSAG1 ELISA: A SENSITIVE AND SPECIFIC ASSAY FOR DETECTING ANTIBODIES AGAINST NEOSPORA HUGHESI IN EQUINE SERUM. Journal of Parasitology, 2005, 91, 446-452.	0.7	27
56	Sarcocystis neurona Merozoites Express a Family of Immunogenic Surface Antigens That Are Orthologues of the Toxoplasma gondii Surface Antigens (SAGs) and SAG-Related Sequences. Infection and Immunity, 2005, 73, 1023-1033.	2.2	40
57	Enzyme-Linked Immunosorbent Assays for Detection of Equine Antibodies Specific to Sarcocystis neurona Surface Antigens. Vaccine Journal, 2005, 12, 1050-1056.	3.1	33
58	Analysis of the Sarcocystis neurona microneme protein SnMIC10: protein characteristics and expression during intracellular development. International Journal for Parasitology, 2003, 33, 671-679.	3.1	16
59	Gene Discovery in the Apicomplexa as Revealed by EST Sequencing and Assembly of a Comparative Gene Database. Genome Research, 2003, 13, 443-454.	5.5	127
60	Sensitive and Specific Identification of Neospora caninum Infection of Cattle Based on Detection of Serum Antibodies to Recombinant Ncp29. Vaccine Journal, 2002, 9, 611-615.	3.1	9
61	Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10753-10758.	7.1	151
62	Redescription of Neospora caninum and its differentiation from related coccidia. International Journal for Parasitology, 2002, 32, 929-946.	3.1	185
63	Initiation of a Sarcocystis neurona expressed sequence tag (EST) sequencing project: a preliminary report. Veterinary Parasitology, 2001, 95, 233-239.	1.8	22
64	Molecular characterization of a thrombospondin-related anonymous protein homologue in Neospora caninum. Molecular and Biochemical Parasitology, 2000, 107, 33-43.	1.1	74
65	Comparison of the major antigens of Neospora caninum and Toxoplasma gondii. International Journal for Parasitology, 1999, 29, 1489-1496.	3.1	63
66	Differentiation of Neospora hughesi from Neospora caninum based on their immunodominant surface antigen, SAG1 and SRS21Note: Nucleotide sequence data reported in this paper are available in the GenBank database under the accession numbers AF113004, AF141960, AF141961, AF141962, AF141963, AF158089, AF160217, AF160218, AF160219, and AF160220.1. International Journal for Parasitology, 1999, 29,	3.1	65
67	1575-1582. Experimental Approaches to Understanding Virulence in Toxoplasmosis. Immunobiology, 1999, 201, 210-224.	1.9	22
68	Neospora caninum:Tachyzoites Express a Potent Type-I Nucleoside Triphosphate Hydrolase,but Lack Nucleoside Diphosphate Hydrolase Activity. Experimental Parasitology, 1998, 90, 277-285.	1.2	53
69	Genotypic Analysis of Toxoplasma gondii Isolates from Pigs. Journal of Parasitology, 1998, 84, 639.	0.7	88
70	The p29 and p35 Immunodominant Antigens of <i>Neospora caninum</i> Tachyzoites Are Homologous to the Family of Surface Antigens of <i>Toxoplasma gondii</i> . Infection and Immunity, 1998, 66, 5322-5328.	2.2	129
71	Targeted Disruption of the <i>GRA2</i> Locus in <i>Toxoplasma gondii</i> Decreases Acute Virulence in Mice. Infection and Immunity, 1998, 66, 4176-4182.	2.2	95
72	Development of Molecular Genetics forNeospora caninum:A Complementary System toToxoplasma gondii. Methods, 1997, 13, 123-133.	3.8	37

#	Article	IF	CITATIONS
73	Identification of two genetic markers that distinguish pathogenic and nonpathogenic strains of Acanthamoeba spp Parasitology Research, 1997, 83, 345-348.	1.6	33
74	Expression of Toxoplasma gondii genes in the closely-related apicomplexan parasite Neospora caninum. Molecular and Biochemical Parasitology, 1997, 86, 29-36.	1.1	33
75	Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis. Journal of Clinical Microbiology, 1997, 35, 1411-1414.	3.9	419
76	Acute virulence in mice is associated with markers on chromosome VIII in Toxoplasma gondii. Infection and Immunity, 1996, 64, 5193-5198.	2.2	130
77	Toxoplasma gondii Comprises Three Clonal Lineages: Correlation of Parasite Genotype with Human Disease. Journal of Infectious Diseases, 1995, 172, 1561-1566.	4.0	1,186
78	Toxoplasma gondii: Analysis of Different Laboratory Stocks of the RH Strain Reveals Genetic Heterogeneity. Experimental Parasitology, 1994, 78, 242-245.	1.2	71
79	Amplification of rDNA loci to detect and type Neisseria meningitidis and other eubacteria. Molecular and Cellular Probes, 1993, 7, 7-17.	2.1	41
80	Identification ofAcanthamoebaat the Generic and Specific Levels Using the Polymerase Chain Reaction. Journal of Protozoology, 1992, 39, 378-385.	0.8	79
81	Use of the polymerase chain reaction for the sensitive detection of St. Louis encephalitis viral RNA. Journal of Virological Methods, 1992, 36, 101-110.	2.1	44
82	Molecular approaches to malaria and Babesisosis diagnosis. Memorias Do Instituto Oswaldo Cruz, 1992, 87, 57-68.	1.6	4