
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wash-Free, Sandwich-Type Protein Detection Using Direct Electron Transfer and Catalytic Signal Amplification of Multiple Redox Labels. Analytical Chemistry, 2022, 94, 2163-2171.	6.5	12
2	Wash-Free Amperometric <i>Escherichia coli</i> Detection via Rapid and Specific Proteolytic Cleavage by Its Outer Membrane OmpT. Analytical Chemistry, 2022, 94, 4756-4762.	6.5	8
3	A MoS ₂ based silver-doped ZnO nanocomposite and its antibacterial activity against β-lactamase expressing <i>Escherichia coli</i> . RSC Advances, 2022, 12, 7268-7275.	3.6	6
4	Repurposing of Ciclopirox to Overcome the Limitations of Zidovudine (Azidothymidine) against Multidrug-Resistant Gram-Negative Bacteria. Pharmaceutics, 2022, 14, 552.	4.5	1
5	Bioconjugated Thymol-Zinc Oxide Nanocomposite as a Selective and Biocompatible Antibacterial Agent against Staphylococcus Species. International Journal of Molecular Sciences, 2022, 23, 6770.	4.1	4
6	Black phosphorus-based CuS nanoplatform: Near-infrared-responsive and reactive oxygen species-generating agent against environmental bacterial pathogens. Journal of Environmental Chemical Engineering, 2022, 10, 108226.	6.7	8
7	Potential Novel Food-Related and Biomedical Applications of Nanomaterials Combined with Bacteriocins. Pharmaceutics, 2021, 13, 86.	4.5	20
8	Au–ZnO Conjugated Black Phosphorus as a Near-Infrared Light-Triggering and Recurrence-Suppressing Nanoantibiotic Platform against Staphylococcus aureus. Pharmaceutics, 2021, 13, 52.	4.5	22
9	A New Surface Charge Neutralizing Nano-Adjuvant to Potentiate Polymyxins in Killing Mcr-1 Mediated Drug-Resistant Escherichia coli. Pharmaceutics, 2021, 13, 250.	4.5	15
10	An Inducible Expression System for Recombinant Sca Proteins with an Autotransporter Domain from Orientia Tsutsugamushi in Escherichia coli. Protein and Peptide Letters, 2021, 28, 241-248.	0.9	0
11	Solid-phase recombinase polymerase amplification using an extremely low concentration of a solution primer for sensitive electrochemical detection of hepatitis B viral DNA. Biosensors and Bioelectronics, 2021, 179, 113065.	10.1	24
12	Bovine Serum Albumin-Immobilized Black Phosphorus-Based Î ³ -Fe2O3 Nanocomposites: A Promising Biocompatible Nanoplatform. Biomedicines, 2021, 9, 858.	3.2	6
13	Genome analysis of Streptococcus salivarius subsp. thermophilus type strain ATCC 19258 and its comparison to equivalent strain NCTC 12958. Archives of Microbiology, 2021, 203, 1843-1849.	2.2	6
14	Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics, 2021, 13, 1887.	4.5	30
15	Positive control synthesis method for COVID-19 diagnosis by one-step real-time RT-PCR. Clinica Chimica Acta, 2020, 511, 149-153.	1.1	17
16	A New Nano-Platform of Erythromycin Combined with Ag Nano-Particle ZnO Nano-Structure against Methicillin-Resistant Staphylococcus aureus. Pharmaceutics, 2020, 12, 841.	4.5	21
17	A nontoxic biocompatible nanocomposite comprising black phosphorus with Au–γ-Fe ₂ O ₃ nanoparticles. RSC Advances, 2020, 10, 16162-16167.	3.6	9
18	Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics, 2020, 12, 499.	4.5	129

#	Article	IF	CITATIONS
19	Extracellular vesicle-associated antigens as a new vaccine platform against scrub typhus. Biochemical and Biophysical Research Communications, 2020, 523, 602-607.	2.1	9
20	Antibacterial potential of Ni-doped zinc oxide nanostructure: comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Advances, 2020, 10, 1232-1242.	3.6	66
21	Easy One-Pot Low-Temperature Synthesized Ag-ZnO Nanoparticles and Their Activity Against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. Frontiers in Bioengineering and Biotechnology, 2020, 8, 216.	4.1	27
22	Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections. Microbial Pathogenesis, 2019, 137, 103800.	2.9	36
23	Design, synthesis, and discovery of novel oxindoles bearing 3-heterocycles as species-specific and combinatorial agents in eradicating Staphylococcus species. Scientific Reports, 2019, 9, 8012.	3.3	20
24	Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms, 2019, 7, 356.	3.6	69
25	Use of a Phosphatase-Like DT-Diaphorase Label for the Detection of Outer Membrane Vesicles. Analytical Chemistry, 2019, 91, 4680-4686.	6.5	8
26	Current Challenges in the Development of Vaccines and Drugs Against Emerging Vector-borne Diseases. Current Medicinal Chemistry, 2019, 26, 2974-2986.	2.4	14
27	Role of acid responsive genes in the susceptibility of Escherichia coli to ciclopirox. Biochemical and Biophysical Research Communications, 2018, 500, 296-301.	2.1	5
28	The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microbial Pathogenesis, 2018, 116, 209-214.	2.9	68
29	Washing-Free Electrochemical Detection of Amplified Double-Stranded DNAs Using a Zinc Finger Protein. Analytical Chemistry, 2018, 90, 4776-4782.	6.5	16
30	Escherichia coli OxyS RNA triggers cephalothin resistance by modulating the expression of CRP-associated genes. Biochemical and Biophysical Research Communications, 2018, 506, 66-72.	2.1	3
31	Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA–RNA Hybrids. Analytical Chemistry, 2017, 89, 2024-2031.	6.5	65
32	Stress-responsively modulated ymdAB-clsC operon plays a role in biofilm formation and apramycin susceptibility in Escherichia coli. FEMS Microbiology Letters, 2017, 364, .	1.8	6
33	YmdB-mediated down-regulation of sucA inhibits biofilm formation and induces apramycin susceptibility in Escherichia coli. Biochemical and Biophysical Research Communications, 2017, 483, 252-257.	2.1	10
34	Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge. Biochemical and Biophysical Research Communications, 2017, 490, 991-996.	2.1	25
35	Nanovesicles: Diagnostic and Therapeutic Tools in Nanoscale Medicine. Applied Science and Convergence Technology, 2016, 25, 103-107.	0.9	1
36	Identification of novel sRNAs involved in biofilm formation, motility and fimbriae formation in Escherichia coli. Scientific Reports, 2015, 5, 15287.	3.3	86

#	Article	IF	CITATIONS
37	In vitro evaluation of ciclopirox as an adjuvant for polymyxin B against gram-negative bacteria. Journal of Antibiotics, 2015, 68, 395-398.	2.0	13
38	Systematic analysis of the role of bacterial Hfq-interacting sRNAs in the response to antibiotics. Journal of Antimicrobial Chemotherapy, 2015, 70, 1659-1668.	3.0	62
39	Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Experimental and Molecular Medicine, 2015, 47, e183-e183.	7.7	101
40	Electrophoretic Mobility Shift Assay of RNA–RNA Complexes. Methods in Molecular Biology, 2015, 1240, 153-163.	0.9	21
41	Regulation of Transcription from Two ssrS Promoters in 6S RNA Biogenesis. Molecules and Cells, 2013, 36, 227-234.	2.6	15
42	Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance. Nature Communications, 2013, 4, 1809.	12.8	102
43	Escherichia coli YmdB regulates biofilm formation independently of its role as an RNase III modulator. BMC Microbiology, 2013, 13, 266.	3.3	21
44	A novel fluorescent reporter system for monitoring and identifying RNase III activity and its target RNAs. RNA Biology, 2012, 9, 1167-1176.	3.1	6
45	Structural analysis of <i>Escherichia coli</i> C5 protein. Proteins: Structure, Function and Bioinformatics, 2012, 80, 963-967.	2.6	2
46	Ribonuclease E Modulation of the Bacterial SOS Response. PLoS ONE, 2012, 7, e38426.	2.5	19
47	Rho-dependent Termination of ssrS (6S RNA) Transcription in Escherichia coli. Journal of Biological Chemistry, 2011, 286, 114-122.	3.4	32
48	Construction of an Efficient In Vitro System for Analysis of Transcription from Sigma 54-Dependent pspA Promoter. Bulletin of the Korean Chemical Society, 2011, 32, 2129-2131.	1.9	0
49	Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family. Nucleic Acids Research, 2010, 38, 5851-5866.	14.5	59
50	Dual Function of RNase E for Control of M1 RNA Biosynthesis in <i>Escherichia coli</i> . Biochemistry, 2008, 47, 762-770.	2.5	11
51	YmdB: a stress-responsive ribonuclease-binding regulator of <i>E. coli</i> RNase III activity. Genes and Development, 2008, 22, 3497-3508.	5.9	66
52	Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene. Bulletin of the Korean Chemical Society, 2007, 28, 1010-1014.	1.9	2
53	Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein. Bulletin of the Korean Chemical Society, 2006, 27, 699-704.	1.9	1
54	Processing of M1 RNA at the 3′ End Protects Its Primary Transcript from Degradation. Journal of Biological Chemistry, 2005, 280, 34667-34674.	3.4	16

#	Article	IF	CITATIONS
55	Kinetic Analysis of Precursor M1 RNA Molecules for Exploring Substrate Specificity of the N-Terminal Catalytic Half of RNase E. Journal of Biochemistry, 2004, 136, 693-699.	1.7	4
56	Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Research, 2004, 32, 6057-6068.	14.5	79
57	3′-end processing of precursor M1 RNA by the N-terminal half of RNase E. FEBS Letters, 2002, 529, 225-231.	2.8	12