Kwang-sun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954080/publications.pdf

Version: 2024-02-01

57 papers	1,516 citations	20 h-index	330143 37 g-index
58	58	58	1983 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics, 2020, 12, 499.	4.5	129
2	Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance. Nature Communications, 2013, 4, 1809.	12.8	102
3	Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Experimental and Molecular Medicine, 2015, 47, e183-e183.	7.7	101
4	Identification of novel sRNAs involved in biofilm formation, motility and fimbriae formation in Escherichia coli. Scientific Reports, 2015, 5, 15287.	3.3	86
5	Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Research, 2004, 32, 6057-6068.	14.5	79
6	Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms, 2019, 7, 356.	3.6	69
7	The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microbial Pathogenesis, 2018, 116, 209-214.	2.9	68
8	YmdB: a stress-responsive ribonuclease-binding regulator of <i>E. coli</i> RNase III activity. Genes and Development, 2008, 22, 3497-3508.	5.9	66
9	Antibacterial potential of Ni-doped zinc oxide nanostructure: comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Advances, 2020, 10, 1232-1242.	3.6	66
10	Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA–RNA Hybrids. Analytical Chemistry, 2017, 89, 2024-2031.	6.5	65
11	Systematic analysis of the role of bacterial Hfq-interacting sRNAs in the response to antibiotics. Journal of Antimicrobial Chemotherapy, 2015, 70, 1659-1668.	3.0	62
12	Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family. Nucleic Acids Research, 2010, 38, 5851-5866.	14.5	59
13	Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections. Microbial Pathogenesis, 2019, 137, 103800.	2.9	36
14	Rho-dependent Termination of ssrS (6S RNA) Transcription in Escherichia coli. Journal of Biological Chemistry, 2011, 286, 114-122.	3.4	32
15	Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics, 2021, 13, 1887.	4.5	30
16	Easy One-Pot Low-Temperature Synthesized Ag-ZnO Nanoparticles and Their Activity Against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. Frontiers in Bioengineering and Biotechnology, 2020, 8, 216.	4.1	27
17	Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge. Biochemical and Biophysical Research Communications, 2017, 490, 991-996.	2.1	25
18	Solid-phase recombinase polymerase amplification using an extremely low concentration of a solution primer for sensitive electrochemical detection of hepatitis B viral DNA. Biosensors and Bioelectronics, 2021, 179, 113065.	10.1	24

#	Article	IF	Citations
19	Auâ€"ZnO Conjugated Black Phosphorus as a Near-Infrared Light-Triggering and Recurrence-Suppressing Nanoantibiotic Platform against Staphylococcus aureus. Pharmaceutics, 2021, 13, 52.	4.5	22
20	Escherichia coli YmdB regulates biofilm formation independently of its role as an RNase III modulator. BMC Microbiology, 2013, 13, 266.	3.3	21
21	A New Nano-Platform of Erythromycin Combined with Ag Nano-Particle ZnO Nano-Structure against Methicillin-Resistant Staphylococcus aureus. Pharmaceutics, 2020, 12, 841.	4.5	21
22	Electrophoretic Mobility Shift Assay of RNA–RNA Complexes. Methods in Molecular Biology, 2015, 1240, 153-163.	0.9	21
23	Design, synthesis, and discovery of novel oxindoles bearing 3-heterocycles as species-specific and combinatorial agents in eradicating Staphylococcus species. Scientific Reports, 2019, 9, 8012.	3.3	20
24	Potential Novel Food-Related and Biomedical Applications of Nanomaterials Combined with Bacteriocins. Pharmaceutics, 2021, 13, 86.	4.5	20
25	Ribonuclease E Modulation of the Bacterial SOS Response. PLoS ONE, 2012, 7, e38426.	2.5	19
26	Positive control synthesis method for COVID-19 diagnosis by one-step real-time RT-PCR. Clinica Chimica Acta, 2020, 511, 149-153.	1.1	17
27	Processing of M1 RNA at the 3′ End Protects Its Primary Transcript from Degradation. Journal of Biological Chemistry, 2005, 280, 34667-34674.	3.4	16
28	Washing-Free Electrochemical Detection of Amplified Double-Stranded DNAs Using a Zinc Finger Protein. Analytical Chemistry, 2018, 90, 4776-4782.	6.5	16
29	Regulation of Transcription from Two ssrS Promoters in 6S RNA Biogenesis. Molecules and Cells, 2013, 36, 227-234.	2.6	15
30	A New Surface Charge Neutralizing Nano-Adjuvant to Potentiate Polymyxins in Killing Mcr-1 Mediated Drug-Resistant Escherichia coli. Pharmaceutics, 2021, 13, 250.	4.5	15
31	Current Challenges in the Development of Vaccines and Drugs Against Emerging Vector-borne Diseases. Current Medicinal Chemistry, 2019, 26, 2974-2986.	2.4	14
32	In vitro evaluation of ciclopirox as an adjuvant for polymyxin B against gram-negative bacteria. Journal of Antibiotics, 2015, 68, 395-398.	2.0	13
33	3′-end processing of precursor M1 RNA by the N-terminal half of RNase E. FEBS Letters, 2002, 529, 225-231.	2.8	12
34	Wash-Free, Sandwich-Type Protein Detection Using Direct Electron Transfer and Catalytic Signal Amplification of Multiple Redox Labels. Analytical Chemistry, 2022, 94, 2163-2171.	6.5	12
35	Dual Function of RNase E for Control of M1 RNA Biosynthesis in <i>Escherichia coli</i> . Biochemistry, 2008, 47, 762-770.	2.5	11
36	YmdB-mediated down-regulation of sucA inhibits biofilm formation and induces apramycin susceptibility in Escherichia coli. Biochemical and Biophysical Research Communications, 2017, 483, 252-257.	2.1	10

3

#	Article	IF	Citations
37	A nontoxic biocompatible nanocomposite comprising black phosphorus with Au–γ-Fe ₂ O ₃ nanoparticles. RSC Advances, 2020, 10, 16162-16167.	3.6	9
38	Extracellular vesicle-associated antigens as a new vaccine platform against scrub typhus. Biochemical and Biophysical Research Communications, 2020, 523, 602-607.	2.1	9
39	Use of a Phosphatase-Like DT-Diaphorase Label for the Detection of Outer Membrane Vesicles. Analytical Chemistry, 2019, 91, 4680-4686.	6.5	8
40	Wash-Free Amperometric <i>Escherichia coli</i> Detection via Rapid and Specific Proteolytic Cleavage by Its Outer Membrane OmpT. Analytical Chemistry, 2022, 94, 4756-4762.	6.5	8
41	Black phosphorus-based CuS nanoplatform: Near-infrared-responsive and reactive oxygen species-generating agent against environmental bacterial pathogens. Journal of Environmental Chemical Engineering, 2022, 10, 108226.	6.7	8
42	A novel fluorescent reporter system for monitoring and identifying RNase III activity and its target RNAs. RNA Biology, 2012, 9, 1167-1176.	3.1	6
43	Stress-responsively modulated ymdAB-clsC operon plays a role in biofilm formation and apramycin susceptibility in Escherichia coli. FEMS Microbiology Letters, 2017, 364, .	1.8	6
44	Bovine Serum Albumin-Immobilized Black Phosphorus-Based Î ³ -Fe2O3 Nanocomposites: A Promising Biocompatible Nanoplatform. Biomedicines, 2021, 9, 858.	3.2	6
45	Genome analysis of Streptococcus salivarius subsp. thermophilus type strain ATCC 19258 and its comparison to equivalent strain NCTC 12958. Archives of Microbiology, 2021, 203, 1843-1849.	2.2	6
46	A MoS ₂ based silver-doped ZnO nanocomposite and its antibacterial activity against β-lactamase expressing <i>Escherichia coli</i> . RSC Advances, 2022, 12, 7268-7275.	3.6	6
47	Role of acid responsive genes in the susceptibility of Escherichia coli to ciclopirox. Biochemical and Biophysical Research Communications, 2018, 500, 296-301.	2.1	5
48	Kinetic Analysis of Precursor M1 RNA Molecules for Exploring Substrate Specificity of the N-Terminal Catalytic Half of RNase E. Journal of Biochemistry, 2004, 136, 693-699.	1.7	4
49	Bioconjugated Thymol-Zinc Oxide Nanocomposite as a Selective and Biocompatible Antibacterial Agent against Staphylococcus Species. International Journal of Molecular Sciences, 2022, 23, 6770.	4.1	4
50	Escherichia coli OxyS RNA triggers cephalothin resistance by modulating the expression of CRP-associated genes. Biochemical and Biophysical Research Communications, 2018, 506, 66-72.	2.1	3
51	Structural analysis of <i>Escherichia coli </i> Ii > C5 protein. Proteins: Structure, Function and Bioinformatics, 2012, 80, 963-967.	2.6	2
52	Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene. Bulletin of the Korean Chemical Society, 2007, 28, 1010-1014.	1.9	2
53	Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein. Bulletin of the Korean Chemical Society, 2006, 27, 699-704.	1.9	1
54	Nanovesicles: Diagnostic and Therapeutic Tools in Nanoscale Medicine. Applied Science and Convergence Technology, 2016, 25, 103-107.	0.9	1

#	Article	IF	CITATIONS
55	Repurposing of Ciclopirox to Overcome the Limitations of Zidovudine (Azidothymidine) against Multidrug-Resistant Gram-Negative Bacteria. Pharmaceutics, 2022, 14, 552.	4.5	1
56	An Inducible Expression System for Recombinant Sca Proteins with an Autotransporter Domain from Orientia Tsutsugamushi in Escherichia coli. Protein and Peptide Letters, 2021, 28, 241-248.	0.9	0
57	Construction of an Efficient In Vitro System for Analysis of Transcription from Sigma 54-Dependent pspA Promoter. Bulletin of the Korean Chemical Society, 2011, 32, 2129-2131.	1.9	0