Prashantha S C

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/895359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: Their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 152, 404-416.	3.9	182
2	Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: Structural and photoluminescence studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 241-251.	3.9	124
3	Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nano phosphor. Journal of Alloys and Compounds, 2011, 509, 10185-10189.	5.5	115
4	Low temperature synthesis and photoluminescence properties of red emitting Mg2SiO4:Eu3+ nanophosphor for near UV light emitting diodes. Sensors and Actuators B: Chemical, 2014, 195, 140-149.	7.8	106
5	Leucas aspera mediated multifunctional CeO2 nanoparticles: Structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 452-462.	3.9	104
6	New green synthesized reduced graphene oxide–ZrO ₂ composite as high performance photocatalyst under sunlight. RSC Advances, 2017, 7, 12690-12703.	3.6	103
7	Hollow microspheres Mg-doped ZrO2 nanoparticles: Green assisted synthesis and applications in photocatalysis and photoluminescence. Journal of Alloys and Compounds, 2016, 672, 609-622.	5.5	101
8	Superstructures of doped yttrium aluminates for luminescent and advanced forensic investigations. Journal of Alloys and Compounds, 2016, 686, 577-587.	5.5	95
9	Synthesis, structural and luminescence studies of magnesium oxide nanopowder. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 847-851.	3.9	94
10	Blue light emitting ceramic nano-pigments of Tm3+ doped YAlO3: Applications in latent finger print, anti-counterfeiting and porcelain stoneware. Dyes and Pigments, 2016, 131, 268-281.	3.7	93
11	A simple combustion method for the synthesis of multi-functional ZrO 2 /CuO nanocomposites: Excellent performance as Sunlight photocatalysts and enhanced latent fingerprint detection. Applied Catalysis B: Environmental, 2017, 210, 97-115.	20.2	89
12	Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities. Journal of Alloys and Compounds, 2015, 622, 86-96.	5.5	87
13	A single host white light emitting Zn2SiO4:Re3+ (Eu, Dy, Sm) phosphor for LED applications. Optik, 2015, 126, 1745-1756.	2.9	86
14	Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: Structural, photocatalytic and photoluminescent properties. Journal of Molecular Catalysis A, 2015, 397, 36-47.	4.8	81
15	Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. Journal of Alloys and Compounds, 2014, 587, 50-58.	5.5	77
16	White light emitting magnesium aluminate nanophosphor: Near ultra violet excited photoluminescence, photometric characteristics and its UV photocatalytic activity. Journal of Alloys and Compounds, 2017, 728, 1124-1138.	5.5	77
17	Mg 2 SiO 4 :Tb 3+ nanophosphor: Auto ignition route and near UV excited photoluminescence properties for WLEDs. Journal of Alloys and Compounds, 2014, 617, 69-75.	5.5	74
18	Influence of zinc additive and pH on the electrochemical activities of Î ² -nickel hydroxide materials and its applications in secondary batteries. Journal of Energy Storage, 2017, 9, 12-24.	8.1	72

#	Article	IF	CITATIONS
19	A benign approach for tailoring the photometric properties and Judd-Ofelt analysis of LaAlO3:Sm3+ nanophosphors for thermal sensor and WLED applications. Sensors and Actuators B: Chemical, 2017, 243, 1057-1066.	7.8	72
20	Bio-inspired synthesis of Y2O3: Eu3+ red nanophosphor for eco-friendly photocatalysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 149-160.	3.9	71
21	CuO embedded β-Ni(OH)2 nanocomposite as advanced electrode materials for supercapacitors. Journal of Alloys and Compounds, 2018, 736, 332-339.	5.5	70
22	CaTiO3:Eu3+ red nanophosphor: Low temperature synthesis and photoluminescence properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 120, 395-400.	3.9	69
23	Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications. Applied Surface Science Advances, 2020, 1, 100023.	6.8	69
24	Neodymium doped yttrium aluminate synthesis and optical properties – A blue light emitting nanophosphor and its use in advanced forensic analysis. Dyes and Pigments, 2016, 134, 227-233.	3.7	65
25	MgO:Eu3+ red nanophosphor: Low temperature synthesis and photoluminescence properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 46-52.	3.9	63
26	Photoluminescence and Judd–Ofelt analysis of Eu 3+ doped LaAlO 3 nanophosphors for WLEDs. Dyes and Pigments, 2015, 122, 22-30.	3.7	61
27	Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application in white LED under NUV excitation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 128, 891-901.	3.9	59
28	A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes. Journal of Alloys and Compounds, 2017, 695, 382-395.	5.5	59
29	MgO:Dy3+ nanophosphor: Self ignition route, characterization and its photoluminescence properties. Materials Characterization, 2014, 97, 27-36.	4.4	58
30	Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+ nanophosphors using E. tirucalli plant latex. Journal of Alloys and Compounds, 2014, 612, 425-434.	5.5	56
31	Tunable white light emissive Mg2SiO4:Dy3+ nanophosphor: Its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 2016, 127, 25-36.	3.7	56
32	Bio-mediated route for the synthesis of shape tunable Y2O3: Tb3+ nanoparticles: Photoluminescence and antibacterial properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 131-140.	3.9	53
33	Bio-mediated Sm doped nano cubic zirconia: Photoluminescent, Judd–Ofelt analysis, electrochemical impedance spectroscopy and photocatalytic performance. Journal of Alloys and Compounds, 2016, 685, 761-773.	5.5	53
34	100MeV Si8+ ion induced luminescence and thermoluminescence of nanocrystalline Mg2SiO4:Eu3+. Journal of Luminescence, 2012, 132, 3093-3097.	3.1	52
35	Bio-inspired route for the synthesis of spherical shaped MgO:Fe3+ nanoparticles: Structural, photoluminescence and photocatalytic investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 703-713.	3.9	52
36	Green engineered nano MgO and ZnO doped with Sm3+: Synthesis and a comparison study on their characterization, PC activity and electrochemical properties. Journal of Physics and Chemistry of Solids, 2019, 127, 127-139.	4.0	50

#	Article	IF	CITATIONS
37	Effect of different fuels on structural, photo and thermo luminescence properties of solution combustion prepared Y2SiO5 nanopowders. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 127, 177-184.	3.9	49
38	Green and chemical-engineered CuFe2O4: characterization, cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications. Journal of Nanostructure in Chemistry, 2018, 8, 45-59.	9.1	48
39	Role of Cu2+ ions substitution in magnetic and conductivity behavior of nano-CoFe2O4. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 256-262.	3.9	47
40	Green synthesis of Y2O3:Dy3+ nanophosphor with enhanced photocatalytic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 687-697.	3.9	47
41	Zn2TiO4:Eu3+ nanophosphor: Self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 857-865.	3.9	47
42	Structural, photo and thermoluminescence studies of Eu3+ doped orthorhombic YAlO3 nanophosphors. Journal of Alloys and Compounds, 2014, 601, 75-84.	5.5	45
43	Evaluation of bifunctional applications of CuFe2O4 nanoparticles synthesized by a sonochemical method. Journal of Physics and Chemistry of Solids, 2021, 148, 109756.	4.0	44
44	Synthesis of Eu3+-activated ZnO superstructures: Photoluminescence, Judd–Ofelt analysis and Sunlight photocatalytic properties. Journal of Molecular Catalysis A, 2015, 409, 26-41.	4.8	42
45	Caralluma fimbriata extract induced green synthesis, structural, optical and photocatalytic properties of ZnO nanostructure modified with Gd. Journal of Alloys and Compounds, 2016, 685, 656-669.	5.5	41
46	A single phase, red emissive Mg2SiO4:Sm3+ nanophosphor prepared via rapid propellant combustion route. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 140, 516-523.	3.9	40
47	White light emission and energy transfer (Dy3+→ Eu3+) in combustion synthesized YSO: Dy3+, Eu3+ nanophosphors. Optik, 2016, 127, 2939-2945.	2.9	40
48	Spectroscopic properties of red emitting Eu3+ doped Y2SiO5 nanophosphors for WLED׳s on the basis of Judd–Ofelt analysis: Calotropis gigantea latex mediated synthesis. Journal of Luminescence, 2017, 181, 153-163.	3.1	40
49	Facile combustion synthesized orthorhombic GdAlO3:Eu3+ nanophosphors: Structural and photoluminescence properties for WLEDs. Journal of Luminescence, 2015, 163, 47-54.	3.1	39
50	Role of flux on morphology and luminescence properties of Sm3+ doped Y2SiO5 nanopowders for WLEDs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 356-365.	3.9	38
51	Luminescence properties of MgO: Fe3+ nanopowders for WLEDs under NUV excitation prepared via propellant combustion route. Journal of Radiation Research and Applied Sciences, 2015, 8, 362-373.	1.2	37
52	Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4:RE3+ (REÂ=ÂEu, Tb) nanophosphors for displays and eccrine latent fingerprint detection. Optical Materials, 2017, 72, 295-304.	3.6	37
53	Optical and Electrochemical Applications of Li-Doped NiO Nanostructures Synthesized via Facile Microwave Technique. Materials, 2020, 13, 2961.	2.9	36
54	Effect of fuel on auto ignition route, photoluminescence and photometric studies of tunable red emitting Mg2SiO4:Cr3+ nanophosphors for solid state lighting applications. Journal of Alloys and Compounds, 2016, 682, 815-824.	5.5	35

#	Article	IF	CITATIONS
55	GdAlO3:Eu3+:Bi3+ nanophosphor: Synthesis and enhancement of red emission for WLEDs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 550-558.	3.9	34
56	Green synthesis, structural characterization and photoluminescence properties of Sm3+ co-doped Y2SiO5:Ce3+ nanophosphors for wLEDs. Optik, 2016, 127, 5310-5315.	2.9	34
57	Ionoluminescence studies of combustion synthesized Dy3+ doped nano crystalline forsterite. Current Applied Physics, 2011, 11, 1274-1277.	2.4	33
58	Structural refinement, band-gap analysis and optical properties of GdAlO ₃ nanophosphors influenced by Dy ³⁺ ion concentrations for white light emitting device applications. Materials Research Express, 2016, 3, 045007.	1.6	32
59	Zn2TiO4: A novel host lattice for Sm3+ doped reddish orange light emitting photoluminescent material for thermal and fingerprint sensor. Optical Materials, 2017, 73, 197-205.	3.6	32
60	Green engineered ZnO nanopowders by <i>Banyan Tree</i> and <i>E. tirucalli</i> plant latex: auto ignition route, photoluminescent and photocatalytic properties. Materials Research Express, 2015, 2, 035011.	1.6	30
61	Synthesis and characterization of <i>Ĵ²</i> -Ni(OH) ₂ embedded with MgO and ZnO nanoparticles as nanohybrids for energy storage devices. Materials Research Express, 2017, 4, 065503.	1.6	30
62	Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property. Physica B: Condensed Matter, 2017, 507, 67-75.	2.7	30
63	Electrochemical, photoluminescence and EPR studies of Fe3+ doped nano Forsterite: Effect of doping on tetra and octahedral sites. Journal of Luminescence, 2018, 197, 233-241.	3.1	30
64	Orange red emitting Eu3+ doped zinc oxide nanophosphor material prepared using Guizotia abyssinica seed extract: Structural and photoluminescence studies. Journal of Luminescence, 2015, 167, 91-100.	3.1	29
65	Electrochemical sensor studies and optical analysis of developed clay based CoFe2O4 ferrite NPs. Sensors International, 2021, 2, 100083.	8.4	28
66	Electrochemical Studies of Nano Metal Oxide Reinforced Nickel Hydroxide Materials for Energy Storage Applications. Materials Today: Proceedings, 2017, 4, 12205-12214.	1.8	26
67	Enhancement of luminescence intensity and spectroscopic analysis ofÂEu3+ activated and Li+ charge-compensated Bi2O3 nanophosphors for solid-state lighting. Journal of Rare Earths, 2019, 37, 356-364.	4.8	26
68	Visible photon excited photoluminescence; photometric characteristics of a green light emitting Zn ₂ TiO ₄ :Tb ³⁺ nanophosphor for wLEDs. Materials Research Express, 2016, 3, 075015.	1.6	25
69	CdSiO3:Eu3+ red nanophosphors prepared by low temperature solution combustion technique, its structural and luminescent properties. Journal of Alloys and Compounds, 2014, 616, 284-292.	5.5	24
70	White light emitting lanthanum aluminate nanophosphor: Near ultra violet excited photoluminescence and photometric characteristics. Journal of Luminescence, 2017, 190, 279-288.	3.1	24
71	Sunlight photocatalytic performance of Mg-doped nickel ferrite synthesized by a green sol-gel route. Journal of Science: Advanced Materials and Devices, 2019, 4, 89-100.	3.1	24
72	Enhanced photoluminescence of SiO2 coated CaTiO3:Dy3+,Li+ nanophosphors for white light emitting diodes. Ceramics International, 2021, 47, 10346-10354.	4.8	23

#	Article	IF	CITATIONS
73	Optical, Electrochemical and Photocatalytic Properties of Sunlight Driven Cu Doped Manganese Ferrite Synthesized By Solution Combustion Synthesis. Materials Today: Proceedings, 2017, 4, 11773-11781.	1.8	22
74	Photoluminescence of a novel green emitting Bi2O3:Tb3+nanophosphors for display, thermal sensor and visualisation of latent fingerprints. Optik, 2019, 192, 162956.	2.9	22
75	Luminescent and thermal properties of novel orange–red emitting MgNb2O6:Sm3+ phosphors for displays, photo catalytic and sensor applications. SN Applied Sciences, 2021, 3, 1.	2.9	22
76	Facile combustion based engineering of novel white light emitting Zn 2 TiO 4 :Dy 3+ nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2017, 2, 360-370.	3.1	21
77	Rational design of bi-functional RE3+ (RE = Tb, Ce) and alkali metals (M+ = Li, Na, K) co-doped CaAl2O4 nanophosphors for solid state lighting and advanced forensic applications. Materials Research Bulletin, 2019, 115, 88-97.	5.2	21
78	Photoluminescent and thermoluminescent properties of low temperature synthesized Nd3+ doped Mg2SiO4 nanophosphors for display and dosimetry applications. Optik, 2019, 180, 8-19.	2.9	21
79	Spectroscopic and luminescence studies of Cr3+ doped cadmium silicate nano-phosphor. Journal of Luminescence, 2015, 161, 247-256.	3.1	20
80	Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2017, 2, 437-444.	3.1	20
81	Multi-functional Zn 2 TiO 4 :Sm 3+ nanopowders: Excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 2018, 3, 151-160.	3.1	20
82	Impacts of core shell structure on structural and photoluminescence properties of CaTiO ₃ :Sm ³⁺ , Li ⁺ nanoparticles for solid state display applications. Materials Research Express, 2019, 6, 085037.	1.6	20
83	Comparative analysis of electrochemical performance and photocatalysis of SiO2 coated CaTiO3:RE3+ (Dy, Sm), Li+ core shell nano structures. Inorganic Chemistry Communication, 2021, 134, 108960.	3.9	20
84	Shape tailored green synthesis of CeO 2 :Ho 3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 145, 63-75.	3.9	19
85	Synthesis, Diffuse reflectance, Electrical and Photoluminesence properties of nanocrystalline Eu3+doped GdAlO3 via Combustion method. Materials Today: Proceedings, 2017, 4, 11706-11712.	1.8	18
86	Chromium (III) doped polycrystalline MgAl2O4 nanoparticles for photocatalytic and supercapacitor applications. Journal of Physics and Chemistry of Solids, 2022, 161, 110491.	4.0	18
87	Banyan latex: a facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route. Materials Research Express, 2015, 2, 095004.	1.6	17
88	lonoluminescence and photoluminescence studies of Ag8+ ion irradiated kyanite. Journal of Luminescence, 2008, 128, 7-10.	3.1	16
89	Photocatalytic study for fabricated Ag doped and undoped MgFe 2 O 4 nanoparticles. Materials Today: Proceedings, 2017, 4, 11764-11772.	1.8	15
90	MgNb2O6:Dy3+ nanophosphor: A facile preparation, down conversion photoluminescence and UV driven photocatalytic properties. Ceramics International, 2021, 47, 10370-10380.	4.8	15

#	Article	IF	CITATIONS
91	Green emitting SrAl2O4:Tb3+ nano-powders for forensic, anti-counterfeiting and optoelectronic devices. Inorganic Chemistry Communication, 2021, 130, 108665.	3.9	15
92	Photocatalytic and Photoluminescence studies of ZrO 2 /ZnO nanocomposite for LED and Waste water treatment applications. Materials Today: Proceedings, 2017, 4, 11747-11755.	1.8	14
93	Damage creation in swift heavy ion-irradiated calcite single crystals: Raman and Infrared study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 1070-1073.	3.9	13
94	Ion beam-induced luminescence and photoluminescence of 100 MeV Si8+ ion irradiated kyanite single crystals. Solid State Communications, 2008, 147, 377-380.	1.9	12
95	Calotropis mediated hydrothermal route for the synthesis of Eu3+ activated La(OH)3 and La2O3 red phosphors. Materials Research Express, 2015, 2, 045402.	1.6	12
96	Spectroscopic and photoluminescence properties of MgO:Cr 3+ nanosheets for WLEDs. Displays, 2016, 41, 16-24.	3.7	12
97	Synthesis of Sunlight Driven ZnO/CuO Nanocomposite: Characterization, Optical, Electrochemical and Photocatalytic Studies. Materials Today: Proceedings, 2017, 4, 11782-11790.	1.8	12
98	Calcination temperature dependent structural modifications, tailored morphology and luminescence properties of MoO3 nanostructures prepared by sonochemical method. Journal of Science: Advanced Materials and Devices, 2018, 3, 77-85.	3.1	12
99	Resource Recovery and Material Characterization of Metals from Waste Li-ion Batteries by an Eco-Friendly Leaching Agent. Materials Today: Proceedings, 2017, 4, 12215-12222.	1.8	11
100	Dysprosium doped strontium aluminate dusting powder: Sweat pores visualization and white LED component. Inorganic Chemistry Communication, 2021, 134, 109028.	3.9	11
101	Synthesis and Photoluminescence Studies of an Orange Red Color Emitting novel CaA l2 O 4 : Sm 3+ nanophosphor for LED Applications. Materials Today: Proceedings, 2017, 4, 11820-11826.	1.8	10
102	Bi2O3:Dy3+ nanophosphors: its white light emission and photocatalytic activity. SN Applied Sciences, 2019, 1, 1.	2.9	10
103	A benign approach for novel synthesis of Eu3+ doped MgNb2O6: Its photoluminescence and photocatalytic studies. Ceramics International, 2021, 47, 14899-14906.	4.8	10
104	Cadmium silicate nanopowders for radiation dosimetry application: Luminescence and dielectric studies. Journal of Asian Ceramic Societies, 2015, 3, 188-197.	2.3	9
105	Effect of Bi3+ and Li+ co-doping on the luminescence properties of Zn2TiO4:Eu3+ nanophosphor for display applications. SN Applied Sciences, 2019, 1, 1.	2.9	9
106	Photoluminescence and photocatalytic properties of novel Bi2O3:Sm3+ nanophosphor. Journal of Science: Advanced Materials and Devices, 2019, 4, 531-537.	3.1	9
107	Structural and optical properties of MgNb2O6 NPs: Its potential application in photocatalytic and pharmaceutical industries as sensor. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100581.	2.9	9
108	Photoluminescence and photometric studies of low temperature prepared red emitting MgAl2O4:Cr3+ nanophosphors for solid state displays. Journal of Science: Advanced Materials and Devices, 2018, 3, 464-470.	3.1	8

#	Article	IF	CITATIONS
109	Photoluminescence, photocatalytic and electrochemical performance of La10Si6O27:Sm3+ nanophosphor: It's applications in display, photocatalytic and electrochemical sensor. Applied Surface Science Advances, 2021, 4, 100070.	6.8	8
110	Rod shaped zirconium titanate nanoparticles: Synthesis, comparison and systematic investigation of structural, photoluminescence, electrochemical sensing and supercapacitor properties. Ceramics International, 2022, 48, 35676-35688.	4.8	8
111	Photocatalytic studies of TiO 2 nanomaterials prepared via facile wet chemical route. Materials Today: Proceedings, 2017, 4, 11713-11719.	1.8	7
112	Structural, photocatalytic and electrochemical studies on facile combustion synthesized low-cost nano chromium (III) doped polycrystalline magnesium aluminate spinels. Journal of Science: Advanced Materials and Devices, 2021, 6, 462-471.	3.1	7
113	Spectroscopic studies of swift heavy ion irradiated nanophase mullite. Nuclear Instruments & Methods in Physics Research B, 2006, 244, 31-33.	1.4	6
114	Enhanced photoluminescence, electrochemical and photocatalytic activity of combustion synthesized La10Si6O27:Dy3+ nanophosphors. Journal of Science: Advanced Materials and Devices, 2021, 6, 49-57.	3.1	6
115	Eco-friendly synthesis of CeO2 NPs using Aloe barbadensis Mill extract: Its biological and photocatalytic activities for industrial dye treatment applications. Journal of Photochemistry and Photobiology, 2021, 7, 100038.	2.5	6
116	Heavy ion induced luminescence studies of YAlO ₃ :Tb ³⁺ , Tm ³⁺ single crystals. Materials Research Express, 2014, 1, 015908.	1.6	5
117	Self-propagating combustion synthesis of CdSiO ₃ nano powder: structural and dosimetric applications. Materials Research Express, 2015, 2, 025005.	1.6	5
118	Synthesis and Characterization of Low Cost MgO Nanoparticle for the Assessment of the corrosion performance on Aluminium 6065. Materials Today: Proceedings, 2017, 4, 12118-12124.	1.8	5
119	Synthesis and characterization of nano ZnO and MgO powder by low temperature solution combustion method: studies concerning electrochemical and photocatalytic behavior. Nanosystems: Physics, Chemistry, Mathematics, 2016, , 662-666.	0.4	5
120	ZnO decorated graphene nanosheets: an advanced material for the electrochemical performance and photocatalytic degradation of organic dyes. Nanosystems: Physics, Chemistry, Mathematics, 2016, , 678-682.	0.4	5
121	Photoluminescence Studies of Rare-Earth-Doped (Ce 3+) LaAlO 3 nanopowders prepared by facile combustion route. Materials Today: Proceedings, 2017, 4, 11848-11856.	1.8	4
122	Green Light Emitting Tb3+ Doped Phosphors - A Review. Material Science Research India, 2018, 15, 252-255.	0.7	4
123	Extraction of Y ₂ O ₃ :Cr ³⁺ nanophosphor by ecoâ€friendly approach and its suitability for white lightâ€emitting diode applications. Luminescence, 2017, 32, 414-424.	2.9	3
124	NUV excited luminescence studies of Tb 3+ in CaTiO 3 nanophosphor for wLEDs. Materials Today: Proceedings, 2017, 4, 11720-11726.	1.8	3
125	Synthesis, Characterization and Photoluminescence Properties of CdSiO ₃ :Ce ³⁺ Nanophosphors. Materials Science Forum, 0, 830-831, 612-615.	0.3	2
126	<i>Cicer arietinum</i> fuel-blended facile synthesis, and structural, photometric, and antioxidant investigation of ZnO:Cr ³⁺ nanophosphors for light-emitting display devices. Inorganic and Nano-Metal Chemistry, 2017, 47, 1701-1710.	1.6	2

#	Article	IF	CITATIONS
127	UV - Sun light Photocatalytic and photoluminescence Studies of Rare-Earth-Doped (Sm 3+) MgO nanopowders by Aloe Vera gel. Materials Today: Proceedings, 2017, 4, 11737-11746.	1.8	2
128	Synthesis and Photometric Properties of SrAl 2 O 4 : Gd 3+ Nanophosphors via Solution Combustion Method. Materials Today: Proceedings, 2017, 4, 12168-12173.	1.8	2
129	Fabrication of MgFe2O4-ZnO Nanocomposites for Photocatalysis of Organic Pollutants under Solar Light Radiation. Asian Journal of Chemistry, 2019, 31, 2995-3003.	0.3	2
130	Photoluminescence properties of CaTiO3:Ho3+ nanophosphors for light emitting display applications. Materials Today: Proceedings, 2021, 46, 5953-5957.	1.8	2
131	Synthesis and Photoluminescence Properties of CdSiO ₃ :Ho ³⁺ Nanophosphor. Advanced Science Letters, 2016, 22, 785-789.	0.2	2
132	Electro chemical and photo catalytic studies of MnO2 nanoparticle from waste dry cell batteries. Nanosystems: Physics, Chemistry, Mathematics, 2016, , 657-661.	0.4	2
133	Green Route Synthesis of MgO Nanoparticles Using Murraya Koenigii Leaf Extract: An Efficient Photo Catalyst for Malachite Green. Advanced Science Letters, 2018, 24, 5801-5804.	0.2	2
134	Dosimetric studies of YAlO3: Mn co-doped with transition (Co, Cu, Fe) and rare earth (Yb, Ce) metal ions. Materials Research Express, 2014, 1, 025710.	1.6	1
135	Calotropis gigantean-assisted YSO:Pr3+ nanophosphors: Near-ultraviolet (NUV) photoluminescence and J-O analysis for solid-state lighting solutions. Inorganic and Nano-Metal Chemistry, 2017, 47, 1234-1242.	1.6	1
136	Diffuse reflectance properties and bandgap analysis of Mg2SiO4:RE3+ (RE= Eu, Tb, Sm, Dy) nanophosphors for light emitting device application. AIP Conference Proceedings, 2017, , .	0.4	1
137	Green Route Synthesis, Structural and Luminescence Studies of Mg-Doped Y ₂ O ₃ Nnanophosphor. Materials Science Forum, 2015, 830-831, 541-544.	0.3	0
138	Judd Ofelt analysis and energy transfer mechanism in Pr3+ doped Mg2SiO4 nanophosphors. AIP Conference Proceedings, 2016, , .	0.4	0
139	Energy-Saving Synthesis of Mg2SiO4:RE3+ Nanophosphors for Solid-State Lighting Applications. Environmental Chemistry for A Sustainable World, 2019, , 121-143.	0.5	0
140	Synthesis of Magnesium Based Nanophosphors and Nanocomposites by Different Techniques. , 2021, , 261-287.		0
141	Synthesis of Magnesium Based Nanophosphors and Nanocomposites by Different Techniques. Advances in Chemical and Materials Engineering Book Series, 0, , 251-276.	0.3	0
142	Electrochemical Analysis Of Cobalt-Doped GdAlO3. Materials Today: Proceedings, 2022, , .	1.8	0