Leena Haataja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8953060/publications.pdf Version: 2024-02-01

Ι σενιά Ηλαταία

#	Article	IF	CITATIONS
1	Controlled induction of human pancreatic progenitors produces functional betaâ€like cells <i>in vitro</i> . EMBO Journal, 2015, 34, 1759-1772.	7.8	481
2	Proinsulin misfolding and diabetes: mutant INS gene-induced diabetes of youth. Trends in Endocrinology and Metabolism, 2010, 21, 652-659.	7.1	149
3	Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism, 2018, 20, 28-50.	4.4	140
4	Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia, 2016, 59, 1480-1491.	6.3	117
5	Proinsulin misfolding is an early event in the progression to type 2 diabetes. ELife, 2019, 8, .	6.0	103
6	Mutant INS-Gene Induced Diabetes of Youth: Proinsulin Cysteine Residues Impose Dominant-Negative Inhibition on Wild-Type Proinsulin Transport. PLoS ONE, 2010, 5, e13333.	2.5	100
7	Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function. Diabetes, 2016, 65, 438-450.	0.6	88
8	Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care, 2019, 42, 258-264.	8.6	82
9	Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic β Cells. Journal of Biological Chemistry, 2013, 288, 1896-1906.	3.4	77
10	Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. Cell Metabolism, 2017, 26, 568-575.e3.	16.2	77
11	Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes. Diabetes, 2012, 61, 828-837.	0.6	61
12	Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Annals of the New York Academy of Sciences, 2018, 1418, 5-19.	3.8	57
13	Inefficient Translocation of Preproinsulin Contributes to Pancreatic β Cell Failure and Late-onset Diabetes. Journal of Biological Chemistry, 2014, 289, 16290-16302.	3.4	55
14	Hypothalamic ER–associated degradation regulates POMC maturation, feeding, and age-associated obesity. Journal of Clinical Investigation, 2018, 128, 1125-1140.	8.2	54
15	Endoplasmic Reticulum Chaperone Glucose-Regulated Protein 94 Is Essential for Proinsulin Handling. Diabetes, 2019, 68, 747-760.	0.6	52
16	Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and Î ² Cell Failure. Cell Reports, 2015, 13, 2527-2538.	6.4	51
17	Disulfide Mispairing During Proinsulin Folding in the Endoplasmic Reticulum. Diabetes, 2016, 65, 1050-1060.	0.6	47
18	Monitoring C-Peptide Storage and Secretion in Islet β-Cells In Vitro and In Vivo. Diabetes, 2016, 65, 699-709	0.6	46

Leena Ηαάταja

#	Article	IF	CITATIONS
19	Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. Journal of Clinical Investigation, 2021, 131, .	8.2	39
20	Abnormalities in proinsulin processing in islets from individuals with longstanding T1D. Translational Research, 2019, 213, 90-99.	5.0	38
21	Endoplasmic Reticulum Oxidoreductin-1α (Ero1α) Improves Folding and Secretion of Mutant Proinsulin and Limits Mutant Proinsulin-induced Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2013, 288, 31010-31018.	3.4	36
22	Evolution of insulin at the edge of foldability and its medical implications. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29618-29628.	7.1	30
23	Altered Î ² -Cell Prohormone Processing and Secretion in Type 1 Diabetes. Diabetes, 2021, 70, 1038-1050.	0.6	28
24	Role of Proinsulin Self-Association in Mutant <i>INS</i> Gene–Induced Diabetes of Youth. Diabetes, 2020, 69, 954-964.	0.6	24
25	Silencing of the FTO gene inhibits insulin secretion: An in vitro study using GRINCH cells. Molecular and Cellular Endocrinology, 2018, 472, 10-17.	3.2	23
26	Sox17 Regulates Insulin Secretion in the Normal and Pathologic Mouse \hat{I}^2 Cell. PLoS ONE, 2014, 9, e104675.	2.5	23
27	The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis. Molecular Metabolism, 2020, 40, 101015.	6.5	22
28	Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size. JCI Insight, 2021, 6, .	5.0	22
29	Requirement for translocon-associated protein (TRAP) α in insulin biogenesis. Science Advances, 2019, 5, eaax0292.	10.3	21
30	Dominant protein interactions that influence the pathogenesis of conformational diseases. Journal of Clinical Investigation, 2013, 123, 3124-3134.	8.2	21
31	PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones. Nature Communications, 2021, 12, 5991.	12.8	21
32	Distinct states of proinsulin misfolding in MIDY. Cellular and Molecular Life Sciences, 2021, 78, 6017-6031.	5.4	18
33	Biological behaviors of mutant proinsulin contribute to the phenotypic spectrum of diabetes associated with insulin gene mutations. Molecular and Cellular Endocrinology, 2020, 518, 111025.	3.2	11
34	"Register-shift―insulin analogs uncover constraints of proteotoxicity in protein evolution. Journal of Biological Chemistry, 2020, 295, 3080-3098.	3.4	11
35	Hyperglucagonemia in an animal model of insulin- deficient diabetes: what therapy can improve it?. Clinical Diabetes and Endocrinology, 2016, 2, 11.	2.7	9
36	Predisposition to Proinsulin Misfolding as a Genetic Risk to Diet-Induced Diabetes. Diabetes, 2021, 70, 2580-2594.	0.6	6

#	Article	IF	CITATIONS
37	Response to Comment on Sims et al. Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care 2019;42:258–264. Diabetes Care, 2019, 42, e85-e86.	8.6	5
38	The ER transmembrane protein PGRMC1 recruits misfolded proteins for reticulophagic clearance. Autophagy, 2022, 18, 228-230.	9.1	4