Julianna Panidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952926/publications.pdf

Version: 2024-02-01

687363 580821 25 634 13 25 citations h-index g-index papers 26 26 26 1138 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Electron Transporting Perylene Diimide-Based Random Terpolymers with Variable Co-Monomer Feed Ratio: A Route to All-Polymer-Based Photodiodes. Macromolecules, 2022, 55, 672-683.	4.8	7
2	Formation of a ternary oxide barrier layer and its role in switching characteristic of ZnO-based conductive bridge random access memory devices. APL Materials, 2022, 10, 031103.	5.1	2
3	Advances in Organic and Perovskite Photovoltaics Enabling a Greener Internet of Things. Advanced Functional Materials, 2022, 32, .	14.9	24
4	Low-power supralinear photocurrent generation <i>via</i> excited state fusion in single-component nanostructured organic photodetectors. Journal of Materials Chemistry C, 2022, 10, 7575-7585.	5.5	4
5	Oneâ€Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Airâ€Stable Highâ€Performance nâ€Type Organic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 5970-5977.	13.8	34
6	Oneâ€Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Airâ€Stable Highâ€Performance nâ€Type Organic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 6035-6042.	2.0	2
7	N-Doping improves charge transport and morphology in the organic non-fullerene acceptor O-IDTBR. Journal of Materials Chemistry C, 2021, 9, 4486-4495.	5.5	17
8	Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 38499-38507.	8.0	4
9	Hall Effect in Polycrystalline Organic Semiconductors: The Effect of Grain Boundaries. Advanced Functional Materials, 2020, 30, 1903617.	14.9	37
10	Polymer Lightâ€Emitting Transistors With Chargeâ€Carrier Mobilities Exceeding 1 cm ² V ^{â^1} s ^{â^1} Advanced Electronic Materials, 2020, 6, 1901132.	5.1	8
11	A Structurally Simple but Highâ€Performing Donor–Acceptor Polymer for Fieldâ€Effect Transistor Applications. Advanced Electronic Materials, 2020, 6, 2000490.	5.1	10
12	Low Temperature Scalable Deposition of Copper(I) Thiocyanate Films via Aerosol-Assisted Chemical Vapor Deposition. Crystal Growth and Design, 2020, 20, 5380-5386.	3.0	3
13	Core Fluorination Enhances Solubility and Ambient Stability of an IDTâ€Based nâ€Type Semiconductor in Transistor Devices. Advanced Functional Materials, 2020, 30, 2000325.	14.9	27
14	Fully Reversible Electrically Induced Photochromic-Like Behaviour of Ag:TiO2 Thin Films. Coatings, 2020, 10, 130.	2.6	6
15	Flexible IGZO TFTs and Their Suitability for Space Applications. IEEE Journal of the Electron Devices Society, 2019, 7, 1182-1190.	2.1	14
16	Impact of Nonfullerene Acceptor Side Chain Variation on Transistor Mobility. Advanced Electronic Materials, 2019, 5, 1900344.	5.1	45
17	Electrochemical Stability and Ambipolar Charge Transport in Diketopyrrolopyrrole-Based Organic Materials. ACS Applied Electronic Materials, 2019, 1, 2037-2046.	4.3	5
18	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 2019, 10, 4475.	12.8	49

#	Article	IF	CITATIONS
19	Introducing a Nonvolatile Nâ€Type Dopant Drastically Improves Electron Transport in Polymer and Smallâ€Molecule Organic Transistors. Advanced Functional Materials, 2019, 29, 1902784.	14.9	35
20	Addition of the Lewis Acid Zn(C $<$ sub $>$ 6 $<$ /sub $>$ F $<$ sub $>$ 5 $<$ /sub $>$) $<$ sub $>$ 2 $<$ /sub $>$ Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm $<$ sup $>$ 2 $<$ /sup $>$ V $<$ sup $>$ 2 $^{\circ}$ 1 $<$ /sup $>$ 5 $<$ 5 $<$ 8up $>$ 2 $^{\circ}$ 1 $<$ 9sup $>$ 8 $^{\circ}$ 1 $<$ 9sup $>$	21.0	64
21	A versatile star-shaped organic semiconductor based on benzodithiophene and diketopyrrolopyrrole. Journal of Materials Chemistry C, 2019, 7, 6622-6629.	5 . 5	16
22	Accurate Extraction of Charge Carrier Mobility in 4â€Probe Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1707105.	14.9	40
23	Remarkable Enhancement of the Hole Mobility in Several Organic Smallâ€Molecules, Polymers, and Smallâ€Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid pâ€Dopant B(C ₆ F ₅) ₃ . Advanced Science, 2018, 5, 1700290.	11.2	131
24	Low Temperature and Radiation Stability of Flexible IGZO TFTs and their Suitability for Space Applications. , $2018, , .$		1
25	Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nature Communications, 2018, 9, 3237.	12.8	48