Christopher L Dearth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952880/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessments of trunk postural control within a fall-prevention training program for service members with lower limb trauma and loss. Gait and Posture, 2022, 92, 493-497.	1.4	4
2	Evaluating the potential use of functional fibrosis to facilitate improved outcomes following volumetric muscle loss injury. Acta Biomaterialia, 2022, 140, 379-388.	8.3	5
3	Trunk muscle forces and spinal loads while walking in persons with lower limb amputation: Influences of chronic low back pain. Journal of Biomechanics, 2022, 135, 111028.	2.1	4
4	Development of a high-color flow cytometry panel for immunologic analysis of tissue injury and reconstruction in a rat model. Cells Tissues Organs, 2022, , .	2.3	3
5	A single-subject comparison of functional outcomes between lower limb salvage vs. transtibial amputation through sequential participation in a fall-prevention program. Prosthetics and Orthotics International, 2022, Publish Ahead of Print, .	1.0	0
6	Prolonged field care for traumatic extremity injuries: defining a role for biologically focused technologies. Npj Regenerative Medicine, 2021, 6, 6.	5.2	9
7	Gait biomechanics: A clinically relevant outcome measure for preclinical research of musculoskeletal trauma. Journal of Orthopaedic Research, 2021, 39, 1139-1151.	2.3	2
8	Evaluation of licofelone as an adjunct anti-inflammatory therapy to biologic scaffolds in the treatment of volumetric muscle loss. Cell and Tissue Research, 2021, 385, 149-159.	2.9	5
9	Biomechanical characterization of the foot-ground interaction among Service members with unilateral transtibial limb loss performing unconstrained drop-landings: Effects of drop height and added mass. Journal of Biomechanics, 2021, 127, 110701.	2.1	0
10	Toward improving residual limb climate within prostheses for persons with lower limb loss. Prosthetics and Orthotics International, 2021, Publish Ahead of Print, .	1.0	0
11	The Role of the Inflammatory Response in Mediating Functional Recovery Following Composite Tissue Injuries. International Journal of Molecular Sciences, 2021, 22, 13552.	4.1	11
12	Changes in Trunk and Pelvis Motion Among Persons With Unilateral Lower Limb Loss During the First Year of Ambulation. Archives of Physical Medicine and Rehabilitation, 2020, 101, 426-433.	0.9	7
13	A more compliant prosthetic foot better accommodates added load while walking among Servicemembers with transtibial limb loss. Journal of Biomechanics, 2020, 98, 109395.	2.1	6
14	Relationships between mediolateral trunk-pelvic motion, hip strength, and knee joint moments during gait among persons with lower limb amputation. Clinical Biomechanics, 2020, 71, 160-166.	1.2	10
15	COXâ€2 inhibition does not alter wound healing outcomes of a volumetric muscle loss injury treated with a biologic scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1929-1938.	2.7	7
16	Pleiotropic actions of Vitamin D in composite musculoskeletal trauma. Injury, 2020, 51, 2099-2109.	1.7	4
17	Taking the Next Steps in Regenerative Rehabilitation: Establishment of a New Interdisciplinary Field. Archives of Physical Medicine and Rehabilitation, 2020, 101, 917-923.	0.9	24
18	Joint power distribution does not change within the contralateral limb one year after unilateral limb loss. Gait and Posture, 2019, 73, 8-13.	1.4	2

#	Article	IF	CITATIONS
19	Lower Extremity Joint Contributions to Trunk Control During Walking in Persons with Transtibial Amputation. Scientific Reports, 2019, 9, 12267.	3.3	4
20	Trunk-Pelvis motions and spinal loads during upslope and downslope walking among persons with transfemoral amputation. Journal of Biomechanics, 2019, 95, 109316.	2.1	3
21	A Comparison of Mental Workload in Individuals with Transtibial and Transfemoral Lower Limb Loss during Dual-Task Walking under Varying Demand. Journal of the International Neuropsychological Society, 2019, 25, 985-997.	1.8	11
22	The Relationship Between Gait Symmetry and Metabolic Demand in Individuals With Unilateral Transfemoral Amputation: A Preliminary Study. Military Medicine, 2019, 184, e281-e287.	0.8	11
23	Trunk muscle forces and spinal loads in persons with unilateral transfemoral amputation during sit-to-stand and stand-to-sit activities. Clinical Biomechanics, 2019, 63, 95-103.	1.2	10
24	Customized Three-Dimensional (3D)–Printed Prosthetic Devices for Wounded Warriors. American Journal of Physical Medicine and Rehabilitation, 2019, 98, e38-e39.	1.4	2
25	Biomechanical and neurocognitive performance outcomes of walking with transtibial limb loss while challenged by a concurrent task. Experimental Brain Research, 2019, 237, 477-491.	1.5	16
26	Trunk muscle activation patterns during walking among persons with lower limb loss: Influences of walking speed. Journal of Electromyography and Kinesiology, 2018, 40, 48-55.	1.7	17
27	The Effect of Mechanical Loading Upon Extracellular Matrix Bioscaffold-Mediated Skeletal Muscle Remodeling. Tissue Engineering - Part A, 2018, 24, 34-46.	3.1	41
28	Walking speed differentially alters spinal loads in persons with traumatic lower limb amputation. Journal of Biomechanics, 2018, 70, 249-254.	2.1	16
29	The impact of sterilization upon extracellular matrix hydrogel structure and function. Journal of Immunology and Regenerative Medicine, 2018, 2, 11-20.	0.4	11
30	Impact of Traumatic Lower Extremity Injuries Beyond Acute Care: Movement-Based Considerations for Resultant Longer Term Secondary Health Conditions. Advances in Wound Care, 2017, 6, 269-278.	5.1	31
31	Multimodality Imaging Approaches for Evaluating Traumatic Extremity Injuries: Implications for Military Medicine. Advances in Wound Care, 2017, 6, 241-251.	5.1	6
32	The Extremity Trauma and Amputation Center of Excellence: Overview of the Research and Surveillance Division. Military Medicine, 2016, 181, 3-12.	0.8	7
33	The Bridging Advanced Developments for Exceptional Rehabilitation (BADER) Consortium: Reaching in Partnership for Optimal Orthopaedic Rehabilitation Outcomes. Military Medicine, 2016, 181, 13-19.	0.8	1
34	The Center for Rehabilitation Sciences Research: Advancing the Rehabilitative Care for Service Members With Complex Trauma. Military Medicine, 2016, 181, 20-25.	0.8	18
35	Regenerative and Rehabilitative Medicine: A Necessary Synergy for Functional Recovery from Volumetric Muscle Loss Injury. Cells Tissues Organs, 2016, 202, 237-249.	2.3	38
36	Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury. Acta Biomaterialia, 2016, 31, 50-60.	8.3	50

CHRISTOPHER L DEARTH

#	Article	IF	CITATIONS
37	The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomaterialia, 2016, 33, 78-87.	8.3	66
38	Plastic Surgery Challenges in War Wounded II: Regenerative Medicine. Advances in Wound Care, 2016, 5, 412-419.	5.1	10
39	Solubilized extracellular matrix from brain and urinary bladder elicits distinct functional and phenotypic responses in macrophages. Biomaterials, 2015, 46, 131-140.	11.4	71
40	The use of urinary bladder matrix in the treatment of trauma and combat casualty wound care. Regenerative Medicine, 2015, 10, 611-622.	1.7	37
41	A Rodent Model to Evaluate the Tissue Response to a Biological Scaffold When Adjacent to a Synthetic Material. Tissue Engineering - Part A, 2015, 21, 2526-2535.	3.1	2
42	Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis. Experimental Cell Research, 2015, 331, 292-308.	2.6	15
43	Histologic Characterization of Acellular Dermal Matrices in a Porcine Model of Tissue Expander Breast Reconstruction. Tissue Engineering - Part A, 2015, 21, 35-44.	3.1	42
44	Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 2015, 84, 208-221.	13.7	189
45	Tissue Engineering and Regenerative Medicine Approaches to Enhance the Functional Response to Skeletal Muscle Injury. Anatomical Record, 2014, 297, 51-64.	1.4	63
46	Targeted Rehabilitation After Extracellular Matrix Scaffold Transplantation for the Treatment of Volumetric Muscle Loss. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S79-S87.	1.4	63
47	Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. Journal of Biomedical Materials Research - Part A, 2014, 102, 234-246.	4.0	104
48	An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss. Science Translational Medicine, 2014, 6, 234ra58.	12.4	384
49	ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials, 2014, 35, 8585-8595.	11.4	141
50	The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials, 2014, 35, 8605-8612.	11.4	205
51	InÂvivo degradation of 14C-labeled porcine dermis biologic scaffold. Biomaterials, 2014, 35, 8297-8304.	11.4	43
52	Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials, 2014, 35, 6838-6849.	11.4	193
53	Preparation and characterization of a biologic scaffold from esophageal mucosa. Biomaterials, 2013, 34, 6729-6737.	11.4	67
54	Human NELL1 Protein Augments Constructive Tissue Remodeling with Biologic Scaffolds. Cells Tissues Organs, 2013, 198, 249-265.	2.3	6

#	Article	IF	CITATIONS
55	Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response. PLoS ONE, 2013, 8, e58486.	2.5	22
56	ICAMâ€1 expression by skeletal muscle cells augments stages of myogenesis. FASEB Journal, 2013, 27, lb813.	0.5	0
57	A Murine Model of Volumetric Muscle Loss and a Regenerative Medicine Approach for Tissue Replacement. Tissue Engineering - Part A, 2012, 18, 1941-1948.	3.1	135
58	Intercellular adhesion moleculeâ€1 is expressed by skeletal muscle cells in hypertrophying muscle of mice. FASEB Journal, 2010, 24, 1046.4.	0.5	0
59	β ₂ -Integrins contribute to skeletal muscle hypertrophy in mice. American Journal of Physiology - Cell Physiology, 2008, 295, C1026-C1036.	4.6	39