Ya-ping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952727/publications.pdf

Version: 2024-02-01

22 2,689 21 22
papers citations h-index g-index

22 22 1764
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Two-dimensional (2D)/2D Interface Engineering of a MoS ₂ /C ₃ N ₄ Heterostructure for Promoted Electrocatalytic Nitrogen Fixation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7081-7090.	4.0	255
2	Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2020, 264, 118525.	10.8	211
3	Efficient electrocatalytic N ₂ reduction on CoO quantum dots. Journal of Materials Chemistry A, 2019, 7, 4389-4394.	5.2	210
4	Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction. Applied Catalysis B: Environmental, 2020, 267, 118693.	10.8	177
5	Fe-doping induced morphological changes, oxygen vacancies and Ce ³⁺ –Ce ³⁺ pairs in CeO ₂ for promoting electrocatalytic nitrogen fixation. Journal of Materials Chemistry A, 2020, 8, 5865-5873.	5.2	172
6	Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites. Carbon, 2018, 140, 112-123.	5.4	167
7	Electronically Coupled SnO ₂ Quantum Dots and Graphene for Efficient Nitrogen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31806-31815.	4.0	163
8	Synergistic boron-dopants and boron-induced oxygen vacancies in MnO ₂ nanosheets to promote electrocatalytic nitrogen reduction. Journal of Materials Chemistry A, 2020, 8, 5200-5208.	5.2	157
9	Mo-doped SnS ₂ with enriched S-vacancies for highly efficient electrocatalytic N ₂ reduction: the critical role of the Mo–Sn–Sn trimer. Journal of Materials Chemistry A, 2020, 8, 7117-7124.	5.2	156
10	NiO Nanodots on Graphene for Efficient Electrochemical N ₂ Reduction to NH ₃ . ACS Applied Energy Materials, 2019, 2, 2288-2295.	2.5	138
11	Efficient Electrocatalytic Nitrogen Fixation on FeMoO ₄ Nanorods. ACS Applied Materials & amp; Interfaces, 2020, 12, 11789-11796.	4.0	107
12	Amorphization engineered VSe _{2â^'<i>x</i>} nanosheets with abundant Se-vacancies for enhanced N ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 1742-1749.	5.2	107
13	CuO/Graphene Nanocomposite for Nitrogen Reduction Reaction. ChemCatChem, 2019, 11, 1441-1447.	1.8	95
14	Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites. Carbon, 2019, 143, 85-96.	5.4	93
15	Amorphization activated FeB2 porous nanosheets enable efficient electrocatalytic N2 fixation. Journal of Energy Chemistry, 2021, 53, 82-89.	7.1	89
16	Ambient electrocatalytic nitrogen reduction on a MoO ₂ /graphene hybrid: experimental and DFT studies. Catalysis Science and Technology, 2019, 9, 4248-4254.	2.1	87
17	Boosted Electrocatalytic N ₂ Reduction on Fluorine-Doped SnO ₂ Mesoporous Nanosheets. Inorganic Chemistry, 2019, 58, 10424-10431.	1.9	84
18	Plasma-engineered NiO nanosheets with enriched oxygen vacancies for enhanced electrocatalytic nitrogen fixation. Inorganic Chemistry Frontiers, 2020, 7, 455-463.	3.0	79

YA-PING LIU

#	Article	IF	CITATION
19	ZnO Quantum Dots Coupled with Graphene toward Electrocatalytic N ₂ Reduction: Experimental and DFT Investigations. Chemistry - A European Journal, 2019, 25, 11933-11939.	1.7	71
20	Bimetallic MnMoO ₄ with dual-active-centers for highly efficient electrochemical N ₂ fixation. Chemical Communications, 2020, 56, 10227-10230.	2.2	27
21	FeVO ₄ porous nanorods for electrochemical nitrogen reduction: contribution of the Fe _{2c} –V _{2c} dimer as a dual electron-donation center. Chemical Communications, 2020, 56, 10505-10508.	2.2	25
22	A Janus antimony sulfide catalyst for highly selective N ₂ electroreduction. Chemical Communications, 2020, 56, 10345-10348.	2,2	19