Julie A Siegenthaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging roles for CNS fibroblasts in health, injury and disease. Nature Reviews Neuroscience, 2022, 23, 23-34.	4.9	74
2	A human brain vascular atlas reveals diverse mediators of Alzheimer's risk. Nature, 2022, 603, 885-892.	13.7	294
3	Techniques for visualizing fibroblast-vessel interactions in the developing and adult CNS. Neurophotonics, 2022, 9, 021911.	1.7	6
4	Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 703944.	1.8	57
5	Not just a 'drain': venules sprout brain capillaries. Trends in Neurosciences, 2021, 44, 849-851.	4.2	1
6	Emerging roles for CNS fibroblasts in health, injury and disease. Nature Reviews Neuroscience, 2021, , .	4.9	2
7	Meninges and vasculature. , 2020, , 1037-1063.		0
8	Single-Cell Transcriptomic Analyses of the Developing Meninges Reveal Meningeal Fibroblast Diversity and Function. Developmental Cell, 2020, 54, 43-59.e4.	3.1	122
9	Gamma Interferon Alters Junctional Integrity via Rho Kinase, Resulting in Blood-Brain Barrier Leakage in Experimental Viral Encephalitis. MBio, 2019, 10, .	1.8	48
10	Retinoic acid signaling in vascular development. Genesis, 2019, 57, e23287.	0.8	23
11	Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Archives of Toxicology, 2018, 92, 469-485.	1.9	26
12	Retinoic Acid Regulates Endothelial β-catenin Expression and Pericyte Numbers in the Developing Brain Vasculature. Frontiers in Cellular Neuroscience, 2018, 12, 476.	1.8	20
13	Retinoic Acid Is Required for Neural Stem and Progenitor Cell Proliferation in the Adult Hippocampus. Stem Cell Reports, 2018, 10, 1705-1720.	2.3	46
14	Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling. Journal of Neuroscience, 2017, 37, 2565-2579.	1.7	19
15	Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Scientific Reports, 2017, 7, 46344.	1.6	28
16	Differential Effects of Retinoic Acid Concentrations in Regulating Blood–Brain Barrier Properties. ENeuro, 2017, 4, ENEURO.0378-16.2017.	0.9	18
17	Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF—A pathways downstream of retinoic acid from the meninges. Developmental Biology, 2016, 420, 148-165.	0.9	38
18	Diverse Functions of Retinoic Acid in Brain Vascular Development. Journal of Neuroscience, 2016, 36, 7786-7801	1.7	35

JULIE A SIEGENTHALER

#	Article	IF	CITATIONS
19	Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neuroscience, 2016, 17, 49.	0.8	57
20	Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science, 2016, 351, 613-617.	6.0	109
21	â€~Sealing off the CNS': cellular and molecular regulation of blood–brain barriergenesis. Current Opinion in Neurobiology, 2013, 23, 1057-1064.	2.0	93
22	Foxc1 is required by pericytes during fetal brain angiogenesis. Biology Open, 2013, 2, 647-659.	0.6	64
23	CoupTFI Interacts with Retinoic Acid Signaling during Cortical Development. PLoS ONE, 2013, 8, e58219.	1.1	14
24	A Cascade of Morphogenic Signaling Initiated by the Meninges Controls Corpus Callosum Formation. Neuron, 2012, 73, 698-712.	3.8	80
25	Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice. Neural Development, 2012, 7, 2.	1.1	44
26	Wnt Signaling Regulates Neuronal Differentiation of Cortical Intermediate Progenitors. Journal of Neuroscience, 2011, 31, 1676-1687.	1.7	230
27	We have got you â€ [~] covered': how the meninges control brain development. Current Opinion in Genetics and Development, 2011, 21, 249-255.	1.5	120
28	Primary cellular meningeal defects cause neocortical dysplasia and dyslamination. Annals of Neurology, 2010, 68, 454-464.	2.8	26
29	There's No Place Like Home for a Neural Stem Cell. Cell Stem Cell, 2010, 7, 141-143.	5.2	7
30	Retinoic Acid from the Meninges Regulates Cortical Neuron Generation. Cell, 2009, 139, 597-609.	13.5	366
31	Generation of Cajal–Retzius neurons in mouse forebrain is regulated by transforming growth factor β-Fox signaling pathways. Developmental Biology, 2008, 313, 35-46.	0.9	30
32	Foxg1 Haploinsufficiency Reduces the Population of Cortical Intermediate Progenitor Cells: Effect of Increased p21 Expression. Cerebral Cortex, 2008, 18, 1865-1875.	1.6	101
33	Cortical dysplasia and skull defects in mice with a <i>Foxc1</i> allele reveal the role of meningeal differentiation in regulating cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14002-14007.	3.3	105
34	Mechanisms of Ethanol-Induced Alterations in Neuronal Migration. , 2006, , 216-229.		2
35	Ethanol disrupts cell cycle regulation in developing rat cortex interaction with transforming growth factor beta1. Journal of Neurochemistry, 2005, 95, 902-912.	2.1	28
36	Transforming Growth Factor Â1 Promotes Cell Cycle Exit through the Cyclin-Dependent Kinase Inhibitor p21 in the Developing Cerebral Cortex. Journal of Neuroscience, 2005, 25, 8627-8636.	1.7	93

#	Article	IF	CITATIONS
37	Transforming Growth Factor Â1 Modulates Cell Migration in Rat Cortex: Effects of Ethanol. Cerebral Cortex, 2004, 14, 791-802.	1.6	73
38	Ethanol Induces Heterotopias in Organotypic Cultures of Rat Cerebral Cortex. Cerebral Cortex, 2004, 14, 1071-1080.	1.6	47