
## Michael R Lieber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952657/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway.<br>Annual Review of Biochemistry, 2010, 79, 181-211.                                                           | 11.1 | 2,299     |
| 2  | Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature<br>Reviews Molecular Cell Biology, 2017, 18, 495-506.                                                          | 37.0 | 1,152     |
| 3  | Hairpin Opening and Overhang Processing by an Artemis/DNA-Dependent Protein Kinase Complex in Nonhomologous End Joining and V(D)J Recombination. Cell, 2002, 108, 781-794.                                   | 28.9 | 969       |
| 4  | Mechanism and regulation of human non-homologous DNA end-joining. Nature Reviews Molecular<br>Cell Biology, 2003, 4, 712-720.                                                                                | 37.0 | 864       |
| 5  | R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature<br>Immunology, 2003, 4, 442-451.                                                                             | 14.5 | 644       |
| 6  | Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells.<br>Nature, 1997, 388, 492-495.                                                                              | 27.8 | 586       |
| 7  | The Mechanism of Human Nonhomologous DNA End Joining. Journal of Biological Chemistry, 2008, 283,<br>1-5.                                                                                                    | 3.4  | 566       |
| 8  | The defect in murine severe combined immune deficiency: Joining of signal sequences but not coding segments in V(D)J recombination. Cell, 1988, 55, 7-16.                                                    | 28.9 | 445       |
| 9  | The FENâ€l family of structureâ€specific nucleases in eukaryotic dna replication, recombination and repair. BioEssays, 1997, 19, 233-240.                                                                    | 2.5  | 434       |
| 10 | Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 1997, 388, 495-498.                                                                                                                     | 27.8 | 381       |
| 11 | Nonhomologous DNA end-joining for repair of DNA double-strand breaks. Journal of Biological<br>Chemistry, 2018, 293, 10512-10523.                                                                            | 3.4  | 358       |
| 12 | Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin<br>V-(D)-J joining signals. Cell, 1987, 49, 775-783.                                                          | 28.9 | 353       |
| 13 | A Biochemically Defined System for Mammalian Nonhomologous DNA End Joining. Molecular Cell,<br>2004, 16, 701-713.                                                                                            | 9.7  | 319       |
| 14 | Bidirectional Gene Organization. Cell, 2002, 109, 807-809.                                                                                                                                                   | 28.9 | 316       |
| 15 | DNA Ligase IV Is Essential for V(D)J Recombination and DNA Double-Strand Break Repair in Human<br>Precursor Lymphocytes. Molecular Cell, 1998, 2, 477-484.                                                   | 9.7  | 305       |
| 16 | Lagging Strand DNA Synthesis at the Eukaryotic Replication Fork Involves Binding and Stimulation of<br>FEN-1 by Proliferating Cell Nuclear Antigen. Journal of Biological Chemistry, 1995, 270, 22109-22112. | 3.4  | 253       |
| 17 | A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature, 2004, 428, 88-93.                                                                                          | 27.8 | 224       |
| 18 | FACT-Mediated Exchange of Histone Variant H2AX Regulated by Phosphorylation of H2AX and ADP-Ribosylation of Spt16. Molecular Cell, 2008, 30, 86-97.                                                          | 9.7  | 219       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The molecular basis and disease relevance of non-homologous DNA end joining. Nature Reviews<br>Molecular Cell Biology, 2020, 21, 765-781.                                                                               | 37.0 | 217       |
| 20 | Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for Their Lineage and Stage Specificity. Cell, 2008, 135, 1130-1142.                                                                              | 28.9 | 207       |
| 21 | RNA: DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regualtion of class switch recombination. Nucleic Acids Research, 1995, 23, 5006-5011.               | 14.5 | 196       |
| 22 | The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination.<br>DNA Repair, 2004, 3, 817-826.                                                                                         | 2.8  | 195       |
| 23 | Efficient Processing of DNA Ends during Yeast Nonhomologous End Joining. Journal of Biological<br>Chemistry, 1999, 274, 23599-23609.                                                                                    | 3.4  | 187       |
| 24 | Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA<br>ligase IV. European Journal of Immunology, 2006, 36, 224-235.                                                        | 2.9  | 182       |
| 25 | DNA Substrate Length and Surrounding Sequence Affect the Activation-induced Deaminase Activity at<br>Cytidine. Journal of Biological Chemistry, 2004, 279, 6496-6500.                                                   | 3.4  | 178       |
| 26 | Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis<br>Observed in DNA Double-Strand Break Repair Mutants. Current Biology, 2002, 12, 397-402.                                     | 3.9  | 166       |
| 27 | Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology, 2015, 16, 766-774.                                                                                                         | 14.5 | 163       |
| 28 | Siteâ€specific recombination in the immune system <sup>1</sup> . FASEB Journal, 1991, 5, 2934-2944.                                                                                                                     | 0.5  | 160       |
| 29 | Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair, 2006, 5, 1234-1245.                                                              | 2.8  | 159       |
| 30 | The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes To Cells, 1999, 4, 77-85.                                                 | 1.2  | 157       |
| 31 | Productive and Nonproductive Complexes of Ku and DNA-Dependent Protein Kinase at DNA Termini.<br>Molecular and Cellular Biology, 1998, 18, 5908-5920.                                                                   | 2.3  | 156       |
| 32 | The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair, 2005, 4, 845-851.                                                                                                                     | 2.8  | 149       |
| 33 | Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand<br>break repair. Proceedings of the National Academy of Sciences of the United States of America, 2015,<br>112, E2575-84. | 7.1  | 142       |
| 34 | Requirement for an Interaction of XRCC4 with DNA Ligase IV for Wild-type V(D)J Recombination and<br>DNA Double-strand Break Repairin Vivo. Journal of Biological Chemistry, 1998, 273, 24708-24714.                     | 3.4  | 139       |
| 35 | XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO Journal, 2007, 26, 1010-1023.                                                                                                     | 7.8  | 135       |
| 36 | DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains.<br>Current Biology, 1998, 8, 873-879.                                                                                     | 3.9  | 133       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mechanism of R-Loop Formation at Immunoglobulin Class Switch Sequences. Molecular and Cellular<br>Biology, 2008, 28, 50-60.                                                                                            | 2.3  | 133       |
| 38 | The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. Current Biology, 1999, 9, 1501-1506.                                                                           | 3.9  | 129       |
| 39 | G Clustering Is Important for the Initiation of Transcription-Induced R-Loops In Vitro, whereas High G<br>Density without Clustering Is Sufficient Thereafter. Molecular and Cellular Biology, 2009, 29,<br>3124-3133. | 2.3  | 127       |
| 40 | Competition between the RNA Transcript and the Nontemplate DNA Strand during R-Loop Formation In<br>Vitro: a Nick Can Serve as a Strong R-Loop Initiation Site. Molecular and Cellular Biology, 2010, 30,<br>146-159.  | 2.3  | 124       |
| 41 | Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO Journal, 2004, 23, 1987-1997.                                                                                                   | 7.8  | 122       |
| 42 | Analysis of the V(D)J Recombination Efficiency at Lymphoid Chromosomal Translocation Breakpoints.<br>Journal of Biological Chemistry, 2001, 276, 29126-29133.                                                          | 3.4  | 120       |
| 43 | The DNA-dependent Protein Kinase Catalytic Subunit Phosphorylation Sites in Human Artemis. Journal of Biological Chemistry, 2005, 280, 33839-33846.                                                                    | 3.4  | 119       |
| 44 | Pathological and Physiological Double-Strand Breaks. American Journal of Pathology, 1998, 153,<br>1323-1332.                                                                                                           | 3.8  | 118       |
| 45 | Mechanisms of human lymphoid chromosomal translocations. Nature Reviews Cancer, 2016, 16, 387-398.                                                                                                                     | 28.4 | 114       |
| 46 | H3K4me3 Stimulates the V(D)J RAG Complex for Both Nicking and Hairpinning in trans in Addition to<br>Tethering in cis: Implications for Translocations. Molecular Cell, 2009, 34, 535-544.                             | 9.7  | 111       |
| 47 | Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA<br>ligase IV complex: influence of terminal DNA sequence. Nucleic Acids Research, 2007, 35, 5755-5762.                  | 14.5 | 107       |
| 48 | Non-homologous end joining often uses microhomology: Implications for alternative end joining.<br>DNA Repair, 2014, 17, 74-80.                                                                                         | 2.8  | 107       |
| 49 | Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Research, 2011, 39, 936-948.                                                       | 14.5 | 106       |
| 50 | Nonhomologous DNA End Joining (NHEJ) and Chromosomal Translocations in Humans. Sub-Cellular<br>Biochemistry, 2010, 50, 279-296.                                                                                        | 2.4  | 105       |
| 51 | Ageing, repetitive genomes and DNA damage. Nature Reviews Molecular Cell Biology, 2004, 5, 69-75.                                                                                                                      | 37.0 | 104       |
| 52 | DNA-PKcs Dependence of Artemis Endonucleolytic Activity, Differences between Hairpins and 5′ or 3′<br>Overhangs. Journal of Biological Chemistry, 2006, 281, 33900-33909.                                              | 3.4  | 95        |
| 53 | Repair of Double-Strand DNA Breaks by the Human Nonhomologous DNA End Joining Pathway: The<br>Iterative Processing Model. Cell Cycle, 2005, 4, 1193-1200.                                                              | 2.6  | 94        |
| 54 | Length-dependent Binding of Human XLF to DNA and Stimulation of XRCC4·DNA Ligase IV Activity*.<br>Journal of Biological Chemistry, 2007, 282, 11155-11162.                                                             | 3.4  | 91        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Generation and Characterization of Endonuclease G Null Mice. Molecular and Cellular Biology, 2005, 25, 294-302.                                                                                                                            | 2.3  | 90        |
| 56 | Extent to which homology can constrain coding exon junctional diversity in V(D)J recombination.<br>Nature, 1993, 363, 625-627.                                                                                                             | 27.8 | 89        |
| 57 | The embryonic lethality in DNA ligase IV-deficient mice is rescued by deletion of Ku: implications for unifying the heterogeneous phenotypes of NHEJ mutants. DNA Repair, 2002, 1, 1017-1026.                                              | 2.8  | 88        |
| 58 | NHEJ and its backup pathways in chromosomal translocations. Nature Structural and Molecular<br>Biology, 2010, 17, 393-395.                                                                                                                 | 8.2  | 86        |
| 59 | Evidence for a Triplex DNA Conformation at the bcl-2 Major Breakpoint Region of the t(14;18)<br>Translocation. Journal of Biological Chemistry, 2005, 280, 22749-22760.                                                                    | 3.4  | 84        |
| 60 | Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining<br>Efficiency. Journal of Biological Chemistry, 2016, 291, 24377-24389.                                                                      | 3.4  | 83        |
| 61 | Sequence Dependence of Chromosomal R-Loops at the Immunoglobulin Heavy-Chain Sμ Class Switch<br>Region. Molecular and Cellular Biology, 2007, 27, 5921-5932.                                                                               | 2.3  | 82        |
| 62 | Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of<br>vertebrate non-homologous DNA end joining: relevance to cancer, aging, and the immune system. Cell<br>Research, 2008, 18, 125-133. | 12.0 | 81        |
| 63 | A noncatalytic function of the ligation complex during nonhomologous end joining. Journal of Cell<br>Biology, 2013, 200, 173-186.                                                                                                          | 5.2  | 81        |
| 64 | DNA Structural Elements Required for FEN-1 Binding. Journal of Biological Chemistry, 1995, 270,<br>4503-4508.                                                                                                                              | 3.4  | 78        |
| 65 | Binding of Inositol Hexakisphosphate (IP6) to Ku but Not to DNA-PKcs. Journal of Biological Chemistry, 2002, 277, 10756-10759.                                                                                                             | 3.4  | 78        |
| 66 | Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism.<br>DNA Repair, 2003, 2, 1163-1174.                                                                                                         | 2.8  | 77        |
| 67 | Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics, 2010, 11, S1.                                                                                                                                                   | 2.8  | 75        |
| 68 | The essential elements for the noncovalent association of two DNA ends during NHEJ synapsis. Nature<br>Communications, 2019, 10, 3588.                                                                                                     | 12.8 | 72        |
| 69 | The RAG-HMG1 Complex Enforces the 12/23 Rule of V(D)J Recombination Specifically at the Double-Hairpin Formation Step. Molecular and Cellular Biology, 1998, 18, 6408-6415.                                                                | 2.3  | 69        |
| 70 | Current insights into the mechanism of mammalian immunoglobulin class switch recombination.<br>Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 333-351.                                                                  | 5.2  | 69        |
| 71 | DEAE-dextran enhances electroporation of mammalian cells. Nucleic Acids Research, 1992, 20, 6739-6740.                                                                                                                                     | 14.5 | 67        |
| 72 | Impact of DNA ligase IV on the fidelity of end joining in human cells. Nucleic Acids Research, 2003, 31, 2157-2167.                                                                                                                        | 14.5 | 67        |

| #  | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Double-Strand Break Formation by the RAG Complex at the Bcl-2 Major Breakpoint Region and at Other<br>Non-B DNA Structures In Vitro. Molecular and Cellular Biology, 2005, 25, 5904-5919.                                                                                                           | 2.3  | 67        |
| 74 | DNA structures at chromosomal translocation sites. BioEssays, 2006, 28, 480-494.                                                                                                                                                                                                                    | 2.5  | 63        |
| 75 | The Nicking Step in V(D)J Recombination Is Independent of Synapsis: Implications for the Immune Repertoire. Molecular and Cellular Biology, 2000, 20, 7914-7921.                                                                                                                                    | 2.3  | 62        |
| 76 | Downstream boundary of chromosomal R-loops at murine switch regions: Implications for the mechanism of class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5030-5035.                                                           | 7.1  | 62        |
| 77 | IgH partner breakpoint sequences provide evidence that AID initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas. Blood, 2012, 120, 2864-2867.                                                                                                                     | 1.4  | 60        |
| 78 | DNA-PKcs regulates a single-stranded DNA endonuclease activity of Artemis. DNA Repair, 2010, 9, 429-437.                                                                                                                                                                                            | 2.8  | 58        |
| 79 | SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair, 2016, 43, 18-23.                                                                                                                                                                                             | 2.8  | 57        |
| 80 | Fine-Structure Analysis of Activation-Induced Deaminase Accessibility to Class Switch Region R-Loops.<br>Molecular and Cellular Biology, 2005, 25, 1730-1736.                                                                                                                                       | 2.3  | 56        |
| 81 | Genetic Interactions between BLM and DNA Ligase IV in Human Cells. Journal of Biological Chemistry, 2004, 279, 55433-55442.                                                                                                                                                                         | 3.4  | 55        |
| 82 | SnapShot: Nonhomologous DNA End Joining (NHEJ). Cell, 2010, 142, 496-496.e1.                                                                                                                                                                                                                        | 28.9 | 53        |
| 83 | DNA Ligase IV Guides End-Processing Choice during Nonhomologous End Joining. Cell Reports, 2017, 20, 2810-2819.                                                                                                                                                                                     | 6.4  | 53        |
| 84 | Prevalent Involvement of Illegitimate V(D)J Recombination in Chromosome 9p21 Deletions in Lymphoid<br>Leukemia. Journal of Biological Chemistry, 2002, 277, 46289-46297.                                                                                                                            | 3.4  | 50        |
| 85 | Structure-Specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex. Nucleic Acids Research, 2016, 44, 4991-4997.                                                                                                                                                                   | 14.5 | 50        |
| 86 | Evidence That the DNA Endonuclease ARTEMIS also Has Intrinsic 5′-Exonuclease Activity. Journal of<br>Biological Chemistry, 2014, 289, 7825-7834.                                                                                                                                                    | 3.4  | 48        |
| 87 | Mechanistic Basis for Coding End Sequence Effects in the Initiation of V(D)J Recombination. Molecular and Cellular Biology, 1999, 19, 8094-8102.                                                                                                                                                    | 2.3  | 45        |
| 88 | Polynucleotide Kinase and Aprataxin-like Forkhead-associated Protein (PALF) Acts as Both a<br>Single-stranded DNA Endonuclease and a Single-Stranded DNA 3′ Exonuclease and Can Participate in<br>DNA End Joining in a Biochemical System. Journal of Biological Chemistry, 2011, 286, 36368-36377. | 3.4  | 43        |
| 89 | Unifying the DNA End-processing Roles of the Artemis Nuclease. Journal of Biological Chemistry, 2015, 290, 24036-24050.                                                                                                                                                                             | 3.4  | 43        |
| 90 | Chromosomal Translocations and Non-B DNA Structures in the Human Genome. Cell Cycle, 2004, 3, 760-766.                                                                                                                                                                                              | 2.6  | 41        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Conformational Variants of Duplex DNA Correlated with Cytosine-rich Chromosomal Fragile Sites.<br>Journal of Biological Chemistry, 2009, 284, 7157-7164.                                                                                          | 3.4  | 40        |
| 92  | Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining: Table 1 Genes and Development, 2008, 22, 411-415.                                                                                           | 5.9  | 39        |
| 93  | A Biochemically Defined System for Coding Joint Formation in V(D)J Recombination. Molecular Cell, 2008, 31, 485-497.                                                                                                                              | 9.7  | 38        |
| 94  | Turning anti-ageing genes against cancer. Nature Reviews Molecular Cell Biology, 2008, 9, 903-910.                                                                                                                                                | 37.0 | 36        |
| 95  | The Cleavage Efficiency of the Human Immunoglobulin Heavy Chain VH Elements by the RAG Complex.<br>Journal of Biological Chemistry, 2002, 277, 5040-5046.                                                                                         | 3.4  | 35        |
| 96  | Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry. Nucleic Acids Research, 2017, 45, 1872-1878.                                                                              | 14.5 | 35        |
| 97  | Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids. BMC Research Notes, 2015, 8, 127.                                                                                                                   | 1.4  | 34        |
| 98  | Analysis of individual immunoglobulin λ light chain genes amplified from single cells is inconsistent<br>with variable region gene conversion in germinal-center B cell somatic mutation. European Journal of<br>Immunology, 1994, 24, 1816-1822. | 2.9  | 32        |
| 99  | Extent to which hairpin opening by the Artemis:DNA-PKcs complex can contribute to junctional diversity in V(D)J recombination. Nucleic Acids Research, 2007, 35, 6917-6923.                                                                       | 14.5 | 32        |
| 100 | BCL6 breaks occur at different AID sequence motifs in Ig–BCL6 and non-Ig–BCL6 rearrangements.<br>Blood, 2013, 121, 4551-4554.                                                                                                                     | 1.4  | 32        |
| 101 | Dissecting the Roles of Divergent and Convergent Transcription in Chromosome Instability. Cell Reports, 2016, 14, 1025-1031.                                                                                                                      | 6.4  | 32        |
| 102 | Large chromosome deletions, duplications, and gene conversion events accumulate with age in normal human colon crypts. Aging Cell, 2013, 12, 269-279.                                                                                             | 6.7  | 31        |
| 103 | The Strength of an Ig Switch Region Is Determined by Its Ability to Drive R Loop Formation and Its<br>Number of WGCW Sites. Cell Reports, 2014, 8, 557-569.                                                                                       | 6.4  | 30        |
| 104 | Effects of DNA end configuration on XRCC4-DNA ligase IV and its stimulation of Artemis activity.<br>Journal of Biological Chemistry, 2017, 292, 13914-13924.                                                                                      | 3.4  | 29        |
| 105 | Both V(D)J Coding Ends but Neither Signal End Can Recombine at the bcl-2 Major Breakpoint Region, and the Rejoining Is Ligase IV Dependent. Molecular and Cellular Biology, 2005, 25, 6475-6484.                                                  | 2.3  | 28        |
| 106 | Detection and Structural Analysis of Râ€Loops. Methods in Enzymology, 2006, 409, 316-329.                                                                                                                                                         | 1.0  | 26        |
| 107 | Unexpected complexity at breakpoint junctions in phenotypically normal individuals and mechanisms involved in generating balanced translocations t(1;22)(p36;q13). Genome Research, 2008, 18, 1733-1742.                                          | 5.5  | 26        |
| 108 | Cytosines, but Not Purines, Determine Recombination Activating Gene (RAG)-induced Breaks on<br>Heteroduplex DNA Structures. Journal of Biological Chemistry, 2010, 285, 7587-7597.                                                                | 3.4  | 26        |

| #   | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Both CpG Methylation and Activation-Induced Deaminase Are Required for the Fragility of the Human<br><i>bcl-2</i> Major Breakpoint Region: Implications for the Timing of the Breaks in the t(14;18)<br>Translocation. Molecular and Cellular Biology, 2013, 33, 947-957. | 2.3  | 26        |
| 110 | The role of G-density in switch region repeats for immunoglobulin class switch recombination.<br>Nucleic Acids Research, 2014, 42, 13186-13193.                                                                                                                           | 14.5 | 25        |
| 111 | Stability and Strand Asymmetry in the Non-B DNA Structure at the bcl-2 Major Breakpoint Region.<br>Journal of Biological Chemistry, 2004, 279, 46213-46225.                                                                                                               | 3.4  | 24        |
| 112 | DNA structure and human diseases. Frontiers in Bioscience - Landmark, 2007, 12, 4402.                                                                                                                                                                                     | 3.0  | 23        |
| 113 | V(D)J recombination activity in human hematopoietic cells: correlation with developmental stage and genome stability. European Journal of Immunology, 1998, 28, 351-358.                                                                                                  | 2.9  | 22        |
| 114 | Convergent BCL6 and lncRNA promoters demarcate the major breakpoint region for BCL6 translocations. Blood, 2015, 126, 1730-1731.                                                                                                                                          | 1.4  | 22        |
| 115 | Analysis of Nonâ€B DNA Structure at Chromosomal Sites in the Mammalian Genome. Methods in Enzymology, 2006, 409, 301-316.                                                                                                                                                 | 1.0  | 21        |
| 116 | The structure-specific nicking of small heteroduplexes by the RAG complex: Implications for lymphoid chromosomal translocations. DNA Repair, 2007, 6, 751-759.                                                                                                            | 2.8  | 21        |
| 117 | The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas is a CpG-type translocation, but the t(11;18)(q21;q21)/API2-MALT1 translocation in MALT lymphomas is not. Blood, 2010, 115, 3640-3641.                                                                    | 1.4  | 21        |
| 118 | t(X;14)(p22;q32)/t(Y;14)(p11;q32) CRLF2-IGH translocations from human B-lineage ALLs involve CpG-type<br>breaks at CRLF2, but CRLF2/P2RY8 intrachromosomal deletions do not. Blood, 2010, 116, 1993-1994.                                                                 | 1.4  | 19        |
| 119 | Radiation Dose Does Matter: Mechanistic Insights into DNA Damage and Repair Support the Linear<br>No-Threshold Model of Low-Dose Radiation Health Risks. Journal of Nuclear Medicine, 2018, 59,<br>1014-1016.                                                             | 5.0  | 19        |
| 120 | A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations<br>Identifies Putatively Functional Loci. Cancer Epidemiology Biomarkers and Prevention, 2016, 25,<br>1609-1618.                                                            | 2.5  | 18        |
| 121 | AID and Reactive Oxygen Species Can Induce DNA Breaks within Human Chromosomal Translocation Fragile Zones. Molecular Cell, 2017, 68, 901-912.e3.                                                                                                                         | 9.7  | 17        |
| 122 | Structural analysis of the catalytic domain of Artemis endonuclease/SNM1C reveals distinct structural features. Journal of Biological Chemistry, 2020, 295, 12368-12377.                                                                                                  | 3.4  | 17        |
| 123 | The Polymerases for V(D)J Recombination. Immunity, 2006, 25, 7-9.                                                                                                                                                                                                         | 14.3 | 16        |
| 124 | Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining. DNA<br>Repair, 2006, 5, 278-285.                                                                                                                                              | 2.8  | 15        |
| 125 | Is there any genetic instability in human cancer?. DNA Repair, 2010, 9, 858.                                                                                                                                                                                              | 2.8  | 15        |
| 126 | DNA-PKcs chemical inhibition versus genetic mutation: Impact on the junctional repair steps of V(D)J<br>recombination. Molecular Immunology, 2020, 120, 93-100.                                                                                                           | 2.2  | 15        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Real-time analysis of RAG complex activity in V(D)J recombination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11853-11858.                    | 7.1  | 14        |
| 128 | Polymerase μ in non-homologous DNA end joining: importance of the order of arrival at a double-strand break in a purified system. Nucleic Acids Research, 2020, 48, 3605-3618.                 | 14.5 | 14        |
| 129 | Detection and characterization of R-loops at the murine immunoglobulin SÎ $\pm$ region. Molecular Immunology, 2013, 54, 208-216.                                                               | 2.2  | 13        |
| 130 | Histone methylation and V(D)J recombination. International Journal of Hematology, 2014, 100, 230-237.                                                                                          | 1.6  | 13        |
| 131 | Antibody diversity: A link between switching and hypermutation. Current Biology, 2000, 10, R798-R800.                                                                                          | 3.9  | 12        |
| 132 | Concept of DNA Lesion Longevity and Chromosomal Translocations. Trends in Biochemical Sciences, 2018, 43, 490-498.                                                                             | 7.5  | 12        |
| 133 | Mechanistic Aspects of Lymphoid Chromosomal Translocations. Journal of the National Cancer<br>Institute Monographs, 2008, 2008, 8-11.                                                          | 2.1  | 11        |
| 134 | Structural analysis of the basal state of the Artemis:DNA-PKcs complex. Nucleic Acids Research, 2022, 50, 7697-7720.                                                                           | 14.5 | 11        |
| 135 | In Vitro Nonhomologous DNA End Joining System. Methods in Enzymology, 2006, 408, 502-510.                                                                                                      | 1.0  | 10        |
| 136 | RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break<br>Failure. Molecular Cell, 2016, 62, 327-334.                                                     | 9.7  | 9         |
| 137 | Mechanistic Basis for RAG Discrimination between Recombination Sites and the Off-Target Sites of<br>Human Lymphomas. Molecular and Cellular Biology, 2012, 32, 365-375.                        | 2.3  | 8         |
| 138 | Modeling of the RAG Reaction Mechanism. Cell Reports, 2014, 7, 307-315.                                                                                                                        | 6.4  | 8         |
| 139 | Human Lymphoid Translocation Fragile Zones Are Hypomethylated and Have Accessible Chromatin.<br>Molecular and Cellular Biology, 2015, 35, 1209-1222.                                           | 2.3  | 8         |
| 140 | Kinetic analysis of the nicking and hairpin formation steps in V(D)J recombination. DNA Repair, 2004, 3, 67-75.                                                                                | 2.8  | 7         |
| 141 | Structural evidence for an in trans base selection mechanism involving Loop1 in polymerase μ at an NHEJ double-strand break junction. Journal of Biological Chemistry, 2019, 294, 10579-10595. | 3.4  | 7         |
| 142 | The mRNA tether model for activation-induced deaminase and its relevance for Ig somatic hypermutation and class switch recombination. DNA Repair, 2022, 110, 103271.                           | 2.8  | 7         |
| 143 | DNA Repair After Exposure to Ionizing Radiation Is Not Error-Free. Journal of Nuclear Medicine, 2018, 59, 348-348.                                                                             | 5.0  | 6         |
| 144 | Structural step forward for NHEJ. Cell Research, 2017, 27, 1304-1306.                                                                                                                          | 12.0 | 5         |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Mechanistic basis for chromosomal translocations at the E2A gene and its broader relevance to human B cell malignancies. Cell Reports, 2021, 36, 109387.                                                             | 6.4  | 5         |
| 146 | Microinjection of Culture Cells via Fusion with Loaded Erythrocytes. , 1987, , 457-478.                                                                                                                              |      | 5         |
| 147 | Effect of CpG dinucleotides within IgH switch region repeats on immunoglobulin class switch recombination. Molecular Immunology, 2015, 66, 284-289.                                                                  | 2.2  | 4         |
| 148 | The mechanisms of human lymphoid chromosomal translocations and their medical relevance.<br>Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 227-243.                                               | 5.2  | 4         |
| 149 | The repetitive portion of the Xenopus IgH Mu switch region mediates orientation-dependent class switch recombination. Molecular Immunology, 2015, 67, 524-531.                                                       | 2.2  | 3         |
| 150 | Nonhomologous DNA end joining of nucleosomal substrates in a purified system. DNA Repair, 2021, 106, 103193.                                                                                                         | 2.8  | 3         |
| 151 | Chromatin Structure Near an Expressed Gene. , 1987, , 99-109.                                                                                                                                                        |      | 3         |
| 152 | Reply: Radiation Dose Does Matter: Mechanistic Insights into DNA Damage and Repair Support the<br>Linear No-Threshold Model of Low-Dose Radiation Health Risks. Journal of Nuclear Medicine, 2018, 59,<br>1780-1781. | 5.0  | 2         |
| 153 | Transposons to V(D)J Recombination: Evolution of the RAG Reaction. Trends in Immunology, 2019, 40, 668-670.                                                                                                          | 6.8  | 2         |
| 154 | Mechanism of R‣oop formation at Immunoglobulin Class Switch sequences. FASEB Journal, 2008, 22, 416-416.                                                                                                             | 0.5  | 2         |
| 155 | NAD+ is not utilized as a co-factor for DNA ligation by human DNA ligase IV. Nucleic Acids Research, 2020, 48, 12746-12750.                                                                                          | 14.5 | 2         |
| 156 | DNA-PKcs at 7Ã: Insights for DNA Repair. Structure, 2008, 16, 334-336.                                                                                                                                               | 3.3  | 1         |
| 157 | Constitutively active Artemis nuclease recognizes structures containing single-stranded DNA configurations. DNA Repair, 2019, 83, 102676.                                                                            | 2.8  | 1         |
| 158 | Temporally uncoupled signal and coding joint formation in human V(D)J recombination. Molecular<br>Immunology, 2020, 128, 227-234.                                                                                    | 2.2  | 1         |
| 159 | Preclinical Evaluation of a Novel Dual Targeting PI3KÎ/BRD4 Inhibitor, SF2535, in B-Cell Acute<br>Lymphoblastic Leukemia. Frontiers in Oncology, 2021, 11, 766888.                                                   | 2.8  | 1         |
| 160 | Double-Strand Break Recognition and its Repair by Non-Homologous End-Joining. , 2010, , 2165-2170.                                                                                                                   |      | 0         |
| 161 | Detection and Characterization of Râ€loops at the Murine Immunoglobulin S α Region. FASEB Journal,<br>2013, 27, lb203.                                                                                               | 0.5  | 0         |