
Gunnar Lischeid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8952644/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Machine learning in crop yield modelling: A powerful tool, but no surrogate for science. Agricultural and Forest Meteorology, 2022, 312, 108698.	1.9	43
2	The curse of the past – What can tile drain effluent tell us about arable field management?. Agriculture, Ecosystems and Environment, 2022, 326, 107787.	2.5	6
3	Landâ€use type temporarily affects active pond community structure but not gene expression patterns. Molecular Ecology, 2022, 31, 1716-1734.	2.0	5
4	From microbes to mammals: Pond biodiversity homogenization across different landâ€use types in an agricultural landscape. Ecological Monographs, 2022, 92, .	2.4	6
5	Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production. Microorganisms, 2021, 9, 443.	1.6	10
6	Key drivers structuring rotifer communities in ponds: insights into an agricultural landscape. Journal of Plankton Research, 2021, 43, 396-412.	0.8	13
7	Inconsistent hydrological trends do not necessarily imply spatially heterogeneous drivers. Journal of Hydrology, 2021, 596, 126096.	2.3	7
8	How much information do we gain from multiple-year sampling in natural pond research?. Limnologica, 2020, 80, 125728.	0.7	3
9	Crop growth and soil water fluxes at erosionâ€affected arable sites: Using weighing lysimeter data for model intercomparison. Vadose Zone Journal, 2020, 19, e20058.	1.3	17
10	Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels. International Journal of Climatology, 2020, 40, 5688-5699.	1.5	10
11	No perfect storm for crop yield failure in Germany. Environmental Research Letters, 2020, 15, 104012.	2.2	53
12	Characterizing hydrological processes within kettle holes using stable water isotopes in the Uckermark of northern Brandenburg, Germany. Hydrological Processes, 2020, 34, 1868-1887.	1.1	10
13	Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors. Hydrology and Earth System Sciences, 2020, 24, 501-513.	1.9	12
14	Application of a decision support tool for industrial and agricultural water reuse solutions in international case studies. Journal of Water Reuse and Desalination, 2020, 10, 405-418.	1.2	1
15	Mobilisation and transport of dissolved organic carbon and iron in peat catchments—Insights from the Lehstenbach stream in Germany using generalised additive models. Hydrological Processes, 2019, 33, 3213-3225.	1.1	5
16	Microclimate and matter dynamics in transition zones of forest to arable land. Agricultural and Forest Meteorology, 2019, 268, 1-10.	1.9	21
17	Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes. Agriculture (Switzerland), 2019, 9, 6.	1.4	18
18	Multivariate analysis to assess the impact of irrigation on groundwater quality. Environmental Earth Sciences, 2019, 78, 1.	1.3	8

#	Article	IF	CITATIONS
19	Disentangling limnological processes in the timeâ€frequency domain. Limnology and Oceanography, 2019, 64, 423-440.	1.6	8
20	Improving a distributed hydrological model using evapotranspirationâ€related boundary conditions as additional constraints in a dataâ€scarce river basin. Hydrological Processes, 2018, 32, 759-775.	1.1	36
21	Dry-wet cycles of kettle hole sediments leave a microbial and biogeochemical legacy. Science of the Total Environment, 2018, 627, 985-996.	3.9	20
22	Temporal and spatial scales of water temperature variability as an indicator for mixing in a polymictic lake. Inland Waters, 2018, 8, 82-95.	1.1	11
23	A review on missing hydrological data processing. Environmental Earth Sciences, 2018, 77, 1.	1.3	39
24	Cross-disciplinary links in environmental systems science: Current state and claimed needs identified in a meta-review of process models. Science of the Total Environment, 2018, 622-623, 954-973.	3.9	12
25	Biogeochemistry of natural ponds in agricultural landscape: Lessons learned from modeling a kettle hole in Northeast Germany. Science of the Total Environment, 2018, 634, 1615-1630.	3.9	15
26	Natural ponds in an agricultural landscape: External drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica, 2018, 68, 5-16.	0.7	43
27	Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis. International Journal of Biometeorology, 2018, 62, 459-469.	1.3	40
28	Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1017-1034.	1.9	32
29	Interdisciplinary Geoâ€ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENOâ€NE). Vadose Zone Journal, 2018, 17, 1-25.	1.3	29
30	Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions. Biogeosciences, 2018, 15, 6519-6536.	1.3	38
31	Stream water quality affected by interacting hydrological and biogeochemical processes in a riparian wetland. Journal of Hydrology, 2018, 563, 260-272.	2.3	9
32	Detecting dominant changes in irregularly sampled multivariate water quality data sets. Hydrology and Earth System Sciences, 2018, 22, 4401-4424.	1.9	1
33	Analysis of longâ€ŧerm dry and wet conditions over Nigeria. International Journal of Climatology, 2017, 37, 3577-3586.	1.5	15
34	Forensic hydrology: what function tells about structure in complex settings. Environmental Earth Sciences, 2017, 76, 1.	1.3	11
35	Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa. Global and Planetary Change, 2017, 155, 121-132.	1.6	60
36	Communicating landscape hydrology — the water cycle in a box. Hydrological Processes, 2017, 31, 750-752.	1.1	5

#	Article	IF	CITATIONS
37	Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes – a review. Agricultural and Forest Meteorology, 2017, 232, 659-671.	1.9	95
38	Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry. Science of the Total Environment, 2017, 574, 46-56.	3.9	28
39	Evaluation of Spatio-Temporal Patterns of Remotely Sensed Evapotranspiration to Infer Information about Hydrological Behaviour in a Data-Scarce Region. Water (Switzerland), 2017, 9, 333.	1.2	17
40	Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients. Horticulturae, 2017, 3, 7.	1.2	7
41	Catchment Evapotranspiration and Runoff. Ecological Studies, 2017, , 355-375.	0.4	1
42	A numerical modelling study of the hydroclimatology of the Niger River Basin, West Africa. Hydrological Sciences Journal, 2016, 61, 94-106.	1.2	5
43	Disentangling the Effects of Land Management and Soil Heterogeneity on Soil Moisture Dynamics. Vadose Zone Journal, 2016, 15, 1-12.	1.3	9
44	Effects of Data and Model Simplification on the Results of a Wetland Water Resource Management Model. Water (Switzerland), 2016, 8, 252.	1.2	1
45	The importance of landscape diversity for carbon fluxes at the landscape level: smallâ€scale heterogeneity matters. Wiley Interdisciplinary Reviews: Water, 2016, 3, 601-617.	2.8	32
46	Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review. Hydrobiologia, 2016, 775, 1-20.	1.0	50
47	Groundwater head controls nitrate export from an agricultural lowland catchment. Advances in Water Resources, 2016, 96, 95-107.	1.7	42
48	Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture. Environmental Science and Pollution Research, 2016, 23, 7409-7424.	2.7	31
49	Assessing resilience in long-term ecological data sets. Ecological Indicators, 2016, 65, 10-43.	2.6	70
50	Monitoring the phase space of ecosystems: Concept and examples from the Quillow catchment, Uckermark. Ecological Indicators, 2016, 65, 55-65.	2.6	13
51	Transit times of water under steady stormflow conditions in the Gårdsjön G1 catchment. Hydrological Processes, 2015, 29, 4657-4665.	1.1	2
52	Temporal variability of the optimal monitoring setup assessed using information theory. Water Resources Research, 2015, 51, 7723-7743.	1.7	27
53	Long term shift of low flows predictors in small lowland catchments of Northeast Germany. Journal of Hydrology, 2015, 521, 508-519.	2.3	6
54	Does textural heterogeneity matter? Quantifying transformation of hydrological signals in soils. Journal of Hydrology, 2015, 523, 725-738.	2.3	16

#	Article	IF	CITATIONS
55	Multivariate Analysis of Groundwater-Quality Time-Series Using Self-organizing Maps and Sammon's Mapping. Water Resources Management, 2015, 29, 3957-3970.	1.9	4
56	A novel method to evaluate the effect of a stream restoration on the spatial pattern of hydraulic connection of stream and groundwater. Journal of Hydrology, 2015, 527, 394-401.	2.3	16
57	Multi-decadal lake-level dynamics in north-eastern Germany as derived by a combination of gauging, proxy-data and modelling. Journal of Hydrology, 2015, 529, 584-599.	2.3	12
58	The effects of climate and changing land use on the discharge regime of a small catchment in Tanzania. Regional Environmental Change, 2015, 15, 1269-1280.	1.4	38
59	Modelling the impacts of reforestation on the projected hydroclimatology of Niger River Basin, West Africa. Ecohydrology, 2014, 7, 163-176.	1.1	16
60	Catchments as heterogeneous and multi-species reactors: An integral approach for identifying biogeochemical hot-spots at the catchment scale. Journal of Hydrology, 2014, 519, 1560-1571.	2.3	19
61	Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting. Journal of Hydrology, 2014, 519, 1634-1641.	2.3	10
62	Analysis of spatial and temporal patterns in onset, cessation and length of growing season in Nigeria. Agricultural and Forest Meteorology, 2014, 194, 77-87.	1.9	27
63	Texture-depending performance of an in situ method assessing deep seepage. Journal of Hydrology, 2014, 511, 61-71.	2.3	17
64	Model-Based Impact Analysis of Climate and Land Use Changes on the Landscape Water Balance. Environmental Science and Engineering, 2014, , 577-590.	0.1	1
65	Understanding processes governing water quality in catchments using principal component scores. Journal of Hydrology, 2013, 486, 31-38.	2.3	61
66	A GUIDELINE FOR DEVELOPING AN INITIAL HYDROLOGICAL MONITORING NETWORK AS A BASIS FOR WATER MANAGEMENT IN ARTIFICIALLY DRAINED WETLANDS. Irrigation and Drainage, 2013, 62, 524-536.	0.8	2
67	Spatial and temporal temperature trends in Nigeria, 1901–2000. Meteorology and Atmospheric Physics, 2012, 118, 95-105.	0.9	30
68	Regional catchment classification with respect to low flow risk in a Pleistocene landscape. Journal of Hydrology, 2012, 475, 392-402.	2.3	21
69	Grasping the heterogeneity of kettle hole water quality in Northeast Germany. Hydrobiologia, 2012, 689, 63-77.	1.0	50
70	Principal component analysis of time series for identifying indicator variables for riverine groundwater extraction management. Journal of Hydrology, 2012, 432-433, 137-144.	2.3	26
71	Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany. Journal of Hydrology, 2012, 448-449, 245-254.	2.3	34
72	Measures to sustain seasonal minimum runoff in small catchments in the mid-latitudes: A review. Journal of Hydrology, 2011, 408, 296-307.	2.3	25

#	Article	IF	CITATIONS
73	Rainfall trends in Nigeria, 1901–2000. Journal of Hydrology, 2011, 411, 207-218.	2.3	161
74	Long-Term Structures in Southern German Runoff Data. , 2011, , 250-265.		0
75	Effects of micro-topography on surface–subsurface exchange and runoff generation in a virtual riparian wetland — A modeling study. Advances in Water Resources, 2010, 33, 1388-1401.	1.7	129
76	Assessing coupling between lakes and layered aquifers in a complex Pleistocene landscape based on water level dynamics. Advances in Water Resources, 2010, 33, 1331-1339.	1.7	30
77	Impact of altering the water table height of an acidic fen on N ₂ O and NO fluxes and soil concentrations. Global Change Biology, 2010, 16, 220-233.	4.2	87
78	Which processes prevail?. Geoderma, 2010, 158, 412-420.	2.3	16
79	Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach. Physics and Chemistry of the Earth, 2010, 35, 648-656.	1.2	27
80	Tracing Biogeochemical Processes in Small Catchments Using Non-linear Methods. , 2010, , 221-242.		3
81	Zero emissions region north-eastern Brandenburg – between climate adaptation and challenges for innovative land use. , 2010, , 115-135.		1
82	Drivers of water level fluctuations and hydrological exchange between groundwater and surface water at the lowland River Spree (Germany): field study and statistical analyses. Hydrological Processes, 2009, 23, 2117-2128.	1.1	76
83	Responses of CO2 Exchange and Primary Production of the Ecosystem Components to Environmental Changes in a Mountain Peatland. Ecosystems, 2009, 12, 590-603.	1.6	45
84	Non-linear visualization and analysis of large water quality data sets: a model-free basis for efficient monitoring and risk assessment. Stochastic Environmental Research and Risk Assessment, 2009, 23, 977-990.	1.9	32
85	Acidification processes and soil leaching influenced by agricultural practices revealed by strontium isotopic ratios. Geochimica Et Cosmochimica Acta, 2009, 73, 4688-4704.	1.6	47
86	Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma, 2009, 153, 379-392.	2.3	98
87	Impact of manipulated drought and heavy rainfall events on peat mineralization processes and sourceâ€sink functions of an acidic fen. Journal of Geophysical Research, 2009, 114, .	3.3	40
88	Conceptualization in catchment modelling: simply learning?. Hydrological Processes, 2008, 22, 2389-2393.	1.1	65
89	Effective modelling of percolation at the landscape scale using data-based approaches. Computers and Geosciences, 2008, 34, 699-713.	2.0	10
90	Combining Hydrometric and Hydrochemical Data Sets for Investigating Runoff Generation Processes: Tautologies, Inconsistencies and Possible Explanations. Geography Compass, 2008, 2, 255-280.	1.5	30

#	Article	IF	CITATIONS
91	Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?. Science of the Total Environment, 2008, 404, 335-342.	3.9	49
92	Tracing biogeochemical processes in stream water and groundwater using non-linear statistics. Journal of Hydrology, 2008, 357, 11-28.	2.3	31
93	Mineralogical sources of the buffer capacity in a granite catchment determined by strontium isotopes. Applied Geochemistry, 2008, 23, 2888-2905.	1.4	10
94	Succession Stages of Vegetation Regeneration: Secondary Tropical Mountain Forests. Ecological Studies, 2008, , 409-415.	0.4	4
95	Nonlinear dimensionality reduction: Alternative ordination approaches for extracting and visualizing biodiversity patterns in tropical montane forest vegetation data. Ecological Informatics, 2007, 2, 138-149.	2.3	49
96	Impact of redox and transport processes in a riparian wetland on stream water quality in the Fichtelgebirge region, southern Germany. Hydrological Processes, 2007, 21, 123-132.	1.1	34
97	Characterizing the Redox Status in Three Different Forested Wetlands with Geochemical Data. Environmental Science & Technology, 2006, 40, 7609-7615.	4.6	27
98	Comparative simulation of the nitrogen dynamics using the INCA model and a neural network analysis: implications for improved nitrogen modelling. Hydrology and Earth System Sciences, 2004, 8, 742-750.	1.9	4
99	High temporal resolution of ion fluxes in semi-natural ecosystems – gain of information or waste of resources?. Biogeochemistry, 2004, 69, 19-35.	1.7	23
100	Trends in Deposition and Canopy Leaching of Mineral Elements as Indicated by Bulk Deposition and Throughfall Measurements. Ecological Studies, 2004, , 233-250.	0.4	22
101	Response of Soil Solution Chemistry and Solute Fluxes to Changing Deposition Rates. Ecological Studies, 2004, , 339-360.	0.4	10
102	Dynamics of Runoff and Runoff Chemistry at the Lehstenbach and Steinkreuz Catchment. Ecological Studies, 2004, , 399-436.	0.4	3
103	Trends in the Input-Output Relations: The Catchment Budgets. Ecological Studies, 2004, , 437-454.	0.4	4
104	Biogeochemistry of Two Forested Catchments in a Changing Environment: A Synthesis. Ecological Studies, 2004, , 457-489.	0.4	4
105	Checking a process-based catchment model by artificial neural networks. Hydrological Processes, 2003, 17, 265-277.	1.1	8
106	Apparent translatory flow in groundwater recharge and runoff generation. Journal of Hydrology, 2002, 265, 195-211.	2.3	37
107	Investigating short-term dynamics and long-term trends of SO4 in the runoff of a forested catchment using artificial neural networks. Journal of Hydrology, 2001, 243, 31-42.	2.3	29
108	Factors Controlling Total Concentration and Aqueous Speciation of Aluminium in an Acidic Headwater Stream of the Bavarian Forest National Park: a Modelling Approach. Clean - Soil, Air, Water, 2001, 29, 206.	0.8	5

#	Article	IF	CITATIONS
109	Investigating trends of hydrochemical time series of small catchments by artificial neural networks. Physics and Chemistry of the Earth, 2001, 26, 15-18.	0.3	10
110	Biogeochemistry of a Spruce Forest Catchment of the Fichtelgebirge in Response to Changing Atmospheric Deposition. Ecological Studies, 2001, , 463-503.	0.4	10
111	Modelling of Fluxes in a Spruce Forest Catchment of the Fichtelgebirge. Ecological Studies, 2001, , 417-462.	0.4	4
112	Sulfate Pools in the Weathered Substrata of a Forested Catchment. Soil Science Society of America Journal, 2000, 64, 1078-1082.	1.2	33
113	Title is missing!. Nutrient Cycling in Agroecosystems, 1998, 50, 109-118.	1.1	11
114	Investigating soil and groundwater quality at different scales in a forested catchment: the Waldstein case study. , 1998, , 109-118.		0
115	Water flow paths and residence times in a small headwater catchment at Gårdsjön, Sweden, during steady state storm flow conditions. Water Resources Research, 1996, 32, 1689-1698.	1.7	30
116	Shallow water flow in a deeply weathered granite aquifer and implications for hydrochemical models. Water, Air, and Soil Pollution, 1995, 85, 1825-1830.	1.1	3
117	Data on and methodology for measurements of microclimate and matter dynamics in transition zones between forest and adjacent arable land. One Ecosystem, 0, 3, e24295.	0.0	1